What is the heat extracted from the cold reservoir for the refrigerator shown in(Figure 1) ? Assume that W1 = -123J and W2 = 88J .
<span>Qc= _________ </span>
<span>Part B
</span>
K=105J
Answer:
3secs
Explanation:
Given the following parameters
height H= 81.3m
Velocity v = 12.4m/s
Required
Time it take to reach the ground
Using the equation of motion
H = ut+1/2gt²
81.3 = 12.4t + 1/2(9.8)t²
81.3 = 12.4t + 4.9t²
4.9t² + 12.4t - 81.3 = 0
Using the general formula to find t
t = -12.4±√12.4²-4(4.9)(-81.3)/2(4.9)
t = -12.4±√153.76+1593.48/2(4.9)
t = -12.4±√1747.24/9.8
t = -12.4+41.8/9.8
t = 29.4/9.8
t = 3secs
Hence it took 3secs to reach the ground
Explanation:
They probably put "rolls without slipping" in there to indicate that there is no loss in friction; or that the friction is constant throughout the movement of the disk. So it's more of a contingency part of the explanation of the problem.
(Remember how earlier on in Physics lessons, we see "ignore friction" written into problems; it just removes the "What about [ ]?" question for anyone who might ask.)
In this case, you can't ignore friction because the disk wouldn't roll without it.
As far as friction producing a torque... I would say that friction is a result of the torque in this case. And because the point of contact is, presumably, the ground, the friction is tangential to the disk. Meaning the friction is linear and has no angular component.
(You could probably argue that by Newton's 3rd Law there should be some opposing torque, but I think that's outside of the scope of this problem.)
Hopefully this helps clear up the misunderstanding for you.