17.7m/s
Explanation:
Given parameters:
Height of branch = 16m
Unknown:
Velocity before falling = ?
Solution:
We are going to use the appropriate motion equation to solve this problem.
The bird is falling in line with the action of gravity.
Initial velocity is 0 for the bird.
Let the velocity during flight = V;
Then;
V² = U² + 2gH
since U = 0
V² = 2gH
V is the unknown velocity
H is the height of fall
g is the acceleration due to gravity
V = √2gH = √ 2x9.8 x 16 = 17.7m/s
learn more:
Velocity brainly.com/question/4460262
#learnwithBrainly
Answer:
1.F is the electrostatic force between charges (in Newtons),
2.q₁ is the magnitude of the first charge (in Coulombs),
3.q₂ is the magnitude of the second charge (in Coulombs),
4.r is the shortest distance between the charges (in m),
5.ke is the Coulomb's constant. It is equal to 8.98755 × 10⁹ N·m²/C² .
Answer:
Optimists generally approach life with a positive outlook, while pessimists tend to expect the worst. Optimists go into new situations with high expectations, while pessimists keep low expectations to prepare for negative outcomes
Explanation: Optimists generally approach life with a positive outlook, while pessimists tend to expect the worst. Optimists go into new situations with high expectations, while pessimists keep low expectations to prepare for negative outcomes
Answer
given,
mass of glider = 0.23 Kg
spring constant = k = 4.50 N/m
spring stretched to 0.130 m
The springs potential energy =


U = 0.038 J
at x = 0,the only energy will be kinetic .


v² = 0.3304
v = 0.575 m/s
displacement of the glider
using conservation of energy



x = 0.678 m
Answer:19.32 m/s
Explanation:
Given
initial speed of car(u)=4.92 m/s
acceleration(a)=
Speed of car after 4.5 s
using equation of motion
v=u+at

v=19.32 m/s
Displacement of the car after 4.5 s



s=54.54 m