Answer:
v = 31.3 m / s
Explanation:
The law of the conservation of stable energy that if there are no frictional forces mechanical energy is conserved throughout the point.
Let's look for mechanical energy at two points, the highest where the body is at rest and the lowest where at the bottom of the plane
Highest point
Em₀ = U = m g y
Lowest point
= K = ½ m v²
As there is no friction, mechanical energy is conserved
Em₀ =
m g y = ½ m v²
v = √ 2 g y
Where we can use trigonometry to find and
sin 30 = y / L
y = L sin 30
Let's replace
v = RA (2 g L sin 30)
Let's calculate
v = RA (2 9.8 100.0 sin30)
v = 31.3 m / s
Answer: 1.77 s
Explanation: In order to solve this problem we have to use the kinematic equation for the position, so we have:
xf= xo+vo*t+(g*t^2)/2 we can consider the origin on the top so the xo=0 and xf=29 m; then
(g*t^2)/2+vo*t-xf=0 vo is the initail velocity, vo=7.65 m/s
then by solving the quadratric equation in t
t=1.77 s
Answer:
February. we will be in the future types, I
Explanation:
Collins the best year fixed come in handy when but it at a very nice relaxing. it will not have the option?
Answer:
(a)0.0675 J
(b)0.0675 J
(c)0.0675 J
(d)0.0675 J
(e)-0.0675 J
(f)0.459 m
Explanation:
15g = 0.015 kg
(a) Kinetic energy as it leaves the hand

(b) By the law of energy conservation, the work done by gravitational energy as it rises to its peak is the same as the kinetic energy as the ball leave the hand, which is 0.0675 J
(c) The change in potential energy would also be the same as 0.0675J in accordance with conservation law of energy.
(d) The gravitational energy at peak point would also be the same as 0.0675J
(e) In this case as the reference point is reversed, we would have to negate the original potential energy. So the potential energy as the ball leaves hand is -0.0675J
(f) Since at the maximum height the ball has potential energy of 0.0675J. This means:
mgh = 0.0675
0.015*9.81h = 0.0675
h = 0.459 m
The ball would reach a maximum height of 0.459 m
Answer:
Explanation:
Given
car A had a head start of 
and it starts at x=0 and t=0
Car B has to travel a distance of 
where
is the distance travel by car A in time t
distance travel by car A is

For car B with speed 


