Answer:![F_{net}=\frac{kq^2}{(L)^2}\left [ \frac{1}{2}+\sqrt{2}\right ]](https://tex.z-dn.net/?f=F_%7Bnet%7D%3D%5Cfrac%7Bkq%5E2%7D%7B%28L%29%5E2%7D%5Cleft%20%5B%20%5Cfrac%7B1%7D%7B2%7D%2B%5Csqrt%7B2%7D%5Cright%20%5D)
Explanation:
Given
Three charges of magnitude q is placed at three corners and fourth charge is placed at last corner with -q charge
Force due to the charge placed at diagonally opposite end on -q charge

where
Distance between the two charges

negative sign indicates that it is an attraction force
Now remaining two charges will apply the same amount of force as they are equally spaced from -q charge

The magnitude of force by both the charge is same but at an angle of 
thus combination of two forces at 2 and 3 will be

Now it will add with force due to 1 charge
Thus net force will be
![F_{net}=\frac{kq^2}{(L)^2}\left [ \frac{1}{2}+\sqrt{2}\right ]](https://tex.z-dn.net/?f=F_%7Bnet%7D%3D%5Cfrac%7Bkq%5E2%7D%7B%28L%29%5E2%7D%5Cleft%20%5B%20%5Cfrac%7B1%7D%7B2%7D%2B%5Csqrt%7B2%7D%5Cright%20%5D)
Answer:
a) i = -9.63 cm
, h ’= .0.24075 cm erect
b) i = 259.74 cm
,
Explanation:
For this exercise let's start by finding the focal length of the lens
1 / f = (n-1) (1 / R₁ - 1 / R₂)
1 / f = (1.70 -1)) 1 / ∞ - 1/13)
1 / f = 0.0538
f = - 18.57 cm
Now we can use the constructor equation
1 / f = 1 / o + 1 / i
1 / i = 1 / f - 1 / o
1 / i = -1 / 18.57 -1/20
1 / i = -0.1038 cm
I = -9.63 cm
For the height of the
image let's use magnification
m = h '/ h = - i / o
h ’= -h i / o
h ’= - 0.5 (-9.63) / 20
h ’= .0.24075 cm
b) we invert the lens
The focal length is
1 / f = (1.70 -1) (1/13 - 1 / int)
1 / f = 0.0538
f = 18.57 cm
1 / i = 1 / f -1 / o
1 / I = 1 / 18.57 - 1/20
1 / I = 3.85 10-3
i = 259.74 cm
h ’= - 0.5 259.74 / 20
h ’= 6.4935 cm
At 4 m/s?
How do the two kinetic energies compare to one another? QUADRUPLES !
#3 What is the kinetic energy of a 2,000 kg bus that is moving at 30 m/s?
Potential energy
Your center or gravity helps your balance because either it will help younot fall or it wont some people are just clusmy