Answer:
Explanation:
If E₀ is the electric field outside the smaller sphere and r is the radius of larger sphere.
E₀ = kQ/r²
The radius of the larger sphere is 3r and the charge on both sphere is same then the electric field outside the larger sphere is given as
E = kQ/(3r)² = kQ/9r² = 1/9 (kQ/r²)= 1/9 x E₀
hence the correct option is e.
Given: Velocity of light c = 3.00 x 10⁸ m/s
Frequency f = 7.65 x 10⁷/s
Required: Wavelength λ = ?
Formula: λ = c/f
λ = 3.00 x 10⁸ m/s/7.65 x 10⁷/s
λ = 3.92 m
The weight changes but the mass will stay the same.
Answer:

Explanation:
Angular acceleration is defined by 
Angular velocity is related to the period by 
Putting all together:

Taking our initial (i) point now and our final (f) point one year later, we would have:



So for our values we have:

Where the minus sign indicates it is decelerating.
The equation of motion of a pendulum is:

where
it its length and
is the gravitational acceleration. Notice that the mass is absent from the equation! This is quite hard to solve, but for <em>small</em> angles (
), we can use:

Additionally, let us define:

We can now write:

The solution to this differential equation is:

where
and
are constants to be determined using the initial conditions. Notice that they will not have any influence on the period, since it is given simply by:

This justifies that the period depends only on the pendulum's length.