We are given:
v0 = initial velocity = 18 km/h
d = distance = 4 km
v = final velocity = 75 km/h
a =?
<span>
We can solve this problem by using the formula:</span>
v^2 = v0^2 + 2 a d
75^2 = 18^2 + 2 (a) * 4
5625 = 324 + 8a
<span>a = 662.625 km/h^2</span>
Answer:
T=13.72N
Explanation:
The tension before the ball is released have no angle is in rest at the same axis of the weight so:
∑F=0
Using Newton law in this case the ball is tied so tension before become to swing is
∑F=FN-T=0




Answer: C
14.75g
Explanation:
Given that the half life time = 60.5s
Let No = initial mass = 59g
N = decayed mass
At time t = 0, No = 59g
At time t = 60.5s,
N = No/2 = 59/2
= 29.5g
At time t = 121
N = 29.5/2 = 14.75g
Therefore N = 14.75g
is the equation that represents the Joule's law of heating.
<h3>
Explanation:</h3>
Joule's law of heating defines the heat generated by any current flowing conductor is directly proportional to
1. Square of Current (I²),
2. Resistance of the conductor (R)
3. Time for which current is passed (t)
Hence, Heat generated =
.....................(1)
By Ohm's Law, the potential difference (V) across a conductor is directly proportional to the current(I) flowing through it. The constant of proportionality is termed as resistance of the conductor (R).
...............................................(2)
From (2), Current (I) can be rewritten as
........................................................(3)
Substituting (3) in (1), we get

Answer:
4987N
Explanation:
Step 1:
Data obtained from the question include:
Mass (m) = 0.140 kg
Initial velocity (U) = 28.9 m/s
Time (t) = 1.85 ms = 1.85x10^-3s
Final velocity (V) = 37.0 m/s
Force (F) =?
Step 2:
Determination of the magnitude of the horizontal force applied. This can be obtained by applying the formula:
F = m(V + U) /t
F = 0.140(37+ 28.9) /1.85x10^-3
F = 9.226/1.85x10^-3
F = 4987N
Therefore, the magnitude of the horizontal force applied is 4987N