Answer:
given,
mass of the skier = 70.1 Kg
angle with horizontal, θ = 8.6°
magnitude of the force,F = ?
a) Applying newton's second law
velocity is constant, a = 0



b) now, when acceleration, a = 0.135 m/s²
velocity is constant, a = 0.135 m/s₂



' W ' is the symbol for 'Watt' ... the unit of power equal to 1 joule/second.
That's all the physics we need to know to answer this question.
The rest is just arithmetic.
(60 joules/sec) · (30 days) · (8 hours/day) · (3600 sec/hour)
= (60 · 30 · 8 · 3600) (joule · day · hour · sec) / (sec · day · hour)
= 51,840,000 joules
__________________________________
Wait a minute ! Hold up ! Hee haw ! Whoa !
Excuse me. That will never do.
I see they want the answer in units of kilowatt-hours (kWh).
In that case, it's
(60 watts) · (30 days) · (8 hours/day) · (1 kW/1,000 watts)
= (60 · 30 · 8 · 1 / 1,000) (watt · day · hour · kW / day · watt)
= 14.4 kW·hour
Rounded to the nearest whole number:
14 kWh
Answer:
The minimum wall thickness required for the spherical tank is 0.0189 m
Explanation:
Given data:
d = inside diameter = 8.1 m
P = internal pressure = 1.26 MPa
σ = 270 MPa
factor of safety = 2
Question: Determine the minimum wall thickness required for the spherical tank, tmin = ?
The allow factor of safety:

The minimun wall thickness:

Answer:
Power output = 96.506 watts
Explanation:
Drag coefficient (Cd) = 0.9
V = 7.3 m/s
Air density (ρ) = 1.225 kg/m^(3)
Area (A) = 0.45 m^2
Let's find the drag force ;
Fd=(1/2)(Cd)(ρ)(A)(v^(2))
So Fd = (1/2)(0.9)(1.225)(0.45)(7.3^(2)) = 13.22N
Drag power = Drag Force x Drag velocity.
Thus drag power, = 13.22 x 7.3 = 96.506 watts
Answer:
μk = 0.26885
Explanation:
Conceptual analysis
We apply Newton's second law:
∑Fx = m*a (Formula 1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
Data:
a= -0.9 m/s²,
g = 9.81 m/s² : acceleration due to gravity
W= 75 N : Block weight
W= m*g
m = W/g = 75/9.8= 7.65 kg : Block mass
Friction force : Ff
Ff= μk*N
μk: coefficient of kinetic friction
N : Normal force (N)
Problem development
We apply the formula (1)
∑Fy = m*ay , ay=0
N-W-25 = 0
N = 75
+25
N= 100N
∑Fx = m*ax
20-Ff= m*ax
20-μk*100
= 7.65*(-0.90 )
20+7.65*(0.90) = μk*100
μk = ( 20+7.65*(0.90)) / (100)
μk = 0.26885