1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ELEN [110]
3 years ago
13

HELP ME PLEASEEE!!!!!!! I am stuck

Mathematics
1 answer:
NISA [10]3 years ago
8 0

Answer:

X = 62

Step-by-step explanation:

The inside of a triangle is always equal to 180º therefore, you need to add everything up to equal 180. It should look like

(x + 1) + 55 + x = 180

Now you just solve.

Since there are 2 x's you can combine the like terms making them equal 2x

Now the equation should look like 2x + 1 + 55 = 180

Simplify the other like terms: 2x + 56 = 180

Now you want to get x by itself so you subtract 56 from both sides:

2x + 56 = 180

    -56      -56

------------------------

2x = 124

Now to finish getting x by itself, divide both sides by 2.

2x = 124

-----   ------

2         2

x = 62

FINALLY you plug in x to see if it worked.

(62 + 1) + 55 + 62 = 180

You might be interested in
How to solve <br><br> log 5 + 2log 2
Hoochie [10]
Log20
log5  + 2 log2
6 0
3 years ago
Write an equation of the line that passes through the given point and is parallel to the graph of the given equation.
True [87]
Question 1:

--------------------------------------------------------------------
Find Slope
--------------------------------------------------------------------
Equation: y = 5x - 2
Slope = 5
Slope of parallel line = 5

--------------------------------------------------------------------
Insert slope into the general equation y = mx + c
--------------------------------------------------------------------
y = 5x + c

--------------------------------------------------------------------
Find y-intercept
--------------------------------------------------------------------
At point (2, -1)
y = 5x + c
-1 = 5(2) + c
c = -1 - 10
c = -11

--------------------------------------------------------------------
Insert y-intercept into the equation
--------------------------------------------------------------------
y = 5x + c
y = 5x - 11

--------------------------------------------------------------------
Answer: y = 5x - 11
--------------------------------------------------------------------

Question 2:

--------------------------------------------------------------------
Find Slope
--------------------------------------------------------------------
y = 9x 
Slope = 9 
Slope of the parallel line = 9

--------------------------------------------------------------------
Insert slope into the equation y = mx + c
--------------------------------------------------------------------
y = 9x + c

--------------------------------------------------------------------
Find y-intercept
--------------------------------------------------------------------
y = 9x + c
At point (0, 5)
5 = 9(0) + c
c = 5

--------------------------------------------------------------------
Insert y-intercept into the equation
--------------------------------------------------------------------
y = 9x + c
y = 9x + 5

--------------------------------------------------------------------
Answer: y = 9x + 5
--------------------------------------------------------------------
7 0
3 years ago
Find the first term and common ratio for the geometric sequence a2 =2.5,a4=62.5
fenix001 [56]

Answer:

a1 = 0.5; common ratio = 5

Step-by-step explanation:

Let the common ratio = r

a2 = 2.5

a3 = 2.5r

a4 = 2.5r * r = 2.5r^2

We are told a4 = 62.5, so

2.5r^2 = 62.5

Divide both sides by 2.5

r^2 = 25

r = 5

a2 = a1 * r

a1 = a2/r = 2.5/5 = 0.5

Answer: a1 = 0.5; common ratio = 5

6 0
3 years ago
9sin(2x) sin (x) = 9cos(x)
nikdorinn [45]

Answer:

\sin(2x)  = 2 \sin(x)  \cos(x)  \\ 9( 2 \sin(x)  \cos(x) ) \sin(x)  = 9 \cos(x)  \\ 18 { \sin}^{2} (x)9 \cos(x)  - 9 \cos(x)  = 0 \\ 9 \cos(x) (2{ \sin}^{2} (x) - 1) = 0 \\ 9 \cos(x) = 0 \: or \: 2{ \sin}^{2} (x) - 1 = 0 \\  \sin(x)  =  \pm \frac{1}{ \sqrt{2} }  \\  \cos(x)  = 0 \\ x =  { \cos}^{ - 1} (0) \\ x =  \frac{ \pi}{2}  = 90 \degree \\ x = \frac{ \pi}{2} + 2\pi \: n \:  \forall \: n \:  \in \:  \Z  \\ = 90 \degree +  360\degree\: n \:  \forall \: n \:  \in \:  \Z \\  =  \pm\frac{ \pi}{4}  \pm2\pi \: n \:  \forall \: n \:  \in \:  \Z \\ x =  \pm45\degree  \pm 360\degree\: n \:  \forall \: n \:  \in \:  \Z

8 0
2 years ago
Generate the nest three terms of each arithmetic sequence shown below.
o-na [289]

Answer:

A)2,6,10

B)2,-6,-18

C)-1,-3,-5

Step-by-step explanation:

<u>A)a1=-2 and d=4</u>

We know that the arithmetic sequence formula is

a_{n}=a_{1}+(n-1)d

Now

a_{2}=a_{1}+(2-1)d

a_{2}=a_{1}+(1)d

Substituting the given value we get

a_{2}= -2+(1)4

a_{2}= -2+4

a_{2}= 2

------------------------------------------

Similarly

a_{3}=a_{1}+(3-1)d

a_{3}=a_{1}+(2)d

Substituting the given value we get

a_{3}= -2+(2)4

a_{3}= -2+8

a_{3}= 6

-------------------------------------------------

a_{4}=a_{1}+(4-1)d

a_{4}=a_{1}+(3)d

Substituting the given value we get

a_{4}= -2+(3)4

a_{4}= -2+16

a_{4}= 10

-------------------------------------------------------------------------------------------

<u>B</u><u>  a_n=a_{(n-1)}-8  with a_1=10</u>

a_2=a_{(2-1)}-8

a_2=a_{1}-8

Substituting the given value

a_2= 10-8

a_2=2

---------------------------------------------------------------------

a_3=a_{(3-1)}-8

a_3=a_{2}-8

Substituting the  value

a_3=2-8

a_3= -6

---------------------------------------------------------------------

a_4=a_{(4-1)}-8

a_4=a_{3}-8

Substituting the  value

a_4= -6-8

a_4= -14

-------------------------------------------------------------------------------------------

<u>C) a_1=3, a_2=1</u>

Here the difference is -2

the arithmetic sequence formula is

a_{n}=a_{1}+(n-1)d

Now

a_{3}=a_{1}+(3-1)d

a_{3}=a_{1}+(2)d

Substituting the value we get

a_{3}= 3+(2)-2

a_{3}= 3-4

a_{3}= -1

------------------------------------------------------------------------------

a_{4}=a_{1}+(4-1)d

a_{4}=a_{1}+(3)d

Substituting the value we get

a_{4}= 3+(3)-2

a_{4}= 3-6

a_{4}= -3

----------------------------------------------------------------------------------

a_{5}=a_{1}+(5-1)d

a_{5}=a_{1}+(4)d

Substituting the value we get

a_{5}= 3+(4)-2

a_{5}= 3-8

a_{5}= -5

4 0
3 years ago
Other questions:
  • The line y = 5x/3 + b goes through the point (7, –1). What is the value of b?
    8·1 answer
  • Find the values of x and y. Leave answers in simplest radical form.<br>​
    15·1 answer
  • Linear or nonlinear tables?
    11·1 answer
  • If Jill enters an elevator at the ground floor (floor 0), goes up 17 floors, goes down 6 floors, goes up 10 floors, and finally
    9·1 answer
  • HELP.
    11·1 answer
  • Bradley Is driving to college to move into the dorms for his freshman year.The university he is attending is 107 miles away from
    15·1 answer
  • If you throw a six sided number cube. then how many times will i get a 7
    5·1 answer
  • Factorise <img src="https://tex.z-dn.net/?f=x%5E%7B2%7D%20%2B%2011x" id="TexFormula1" title="x^{2} + 11x" alt="x^{2} + 11x" alig
    11·1 answer
  • Plzz answerrrr.............................
    10·2 answers
  • a, b and c are integers. They are the length, width and height of a cuboid respectively. It has a volume of 12cm^3, and the top
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!