Answer:
it says the answer is variation
<u>Given:</u>
Initial amount of carbon, A₀ = 16 g
Decay model = 16exp(-0.000121t)
t = 90769076 years
<u>To determine:</u>
the amount of C-14 after 90769076 years
<u>Explanation:</u>
The radioactive decay model can be expressed as:
A = A₀exp(-kt)
where A = concentration of the radioactive species after time t
A₀ = initial concentration
k = decay constant
Based on the given data :
A = 16 * exp(-0.000121*90769076) = 16(0) = 0
Ans: Based on the decay model there will be no C-14 left after 90769076 years
I believe that it is A. If you remember in lesson 03.03 it gave multiple examples of things that support the continental drift theory. One of them was fossils of the same organisms found in different continents.
First, let's compute the number of moles in the system assuming ideal gas behavior.
PV = nRT
(663 mmHg)(1atm/760 mmHg)(60 L) = n(0.0821 L-atm/mol-K)(20+273 K)
Solving for n,
n = 2.176 moles
At standard conditions, the standard molar volume is 22.4 L/mol. Thus,
Standard volume = 22.4 L/mol * 2.176 mol =<em> 48.74 L</em>