Answer:
15 grams of water
Explanation:
15 grams of water of water would lose heat the faster compared to higher masses of water.
Water generally is a poor conductor heat.
- To heat up a unit of water, significant amount of energy must be added to the body of water.
- With time, the body continues to increase in temperature.
- A 500g mass of water will take more time to lose heat.
<u>Answer:</u> The mass of arsenic found in the sample is 0.25 mg
<u>Explanation:</u>
ppm is the amount of solute (in milligrams) present in kilogram of a solvent. It is also known as parts-per million.
To calculate the ppm of oxygen in sea water, we use the equation:

Both the masses are in grams.
We are given:
Concentration of arsenic = 5 ppm
Mass of sample = 50 g
Putting values in above equation, we get:

<u>Conversion factor used:</u> 1 g = 1000 mg
Hence, the mass of arsenic found in the sample is 0.25 mg
12.8 mole of CO2 from the combustion
The mass of the piece of wood is 35.58 g.
Joule = M × T × C
Where, M = mass
T = change in temperature(42C-23C=19 C)
C = specific heat capacity = 1.716 joules/gram
Substituting the values in the equation,
1160 = M × 19 × 1.716
M = 1160/32.604 = 35.58 g
Therefore, the mass of the piece of wood = 35.58 g
<h3>What is meant by specific heat capacity?</h3>
A material's specific heat capacity, which is defined as its heat capacity divided by its mass, determines how much energy is required to increase a gram's temperature by one degree Celsius (or one Kelvin)
<h3>What is mass?</h3>
Mass is the quantity of matter in a physical body.
To learn more about specific heat capacity visit:
brainly.com/question/1747943
#SPJ4