Drafting has been around a long time. We can safely assume that since we’ve had a tool in our hands, we’ve been describing plans and technical representations and doodling ideas. Let’s take a closer aspect at drafting and its advance from an under-the-radar part of the method to a very developed skill set.
<u>Explanation</u>
• 1970s – The beginning computer-aided design systems were included in the industry. Following the design engineers tried the learning curve of using CAD, their performance and productivity went through the roof. Over time, CAD software became affordable and more user-friendly, and its fame grew.
• 1990s – CAD software was expanded further to include 3-D characteristics, and quickly the technical designs of the past enhanced increasingly simulated and accessible to engineer.
• Present – The development of drafting has brought us to the present day, were using 3-D representations is the standard and the aim to generate full virtual prototypes.
Answer:
Letter D
Explanation:
AutoCAD provides eleven different ways to create arcs. The different options are used based on the geometry conditions of the design. To create an arc, you can specify various combinations of center, endpoint, start point, radius, angle, chord length, and direction values.
Answer:
More Drag on the down going wing and More Lift on the up going wing
Explanation:
The autorotation spins of blades used in airborne wind energy technology sectors help drive and move the winds and water propeller-type turbines or shafts of generators to produce electricity at altitude and transmit the electricity to earth through conductive tethers.
Sometimes autorotation takes place in rotating parachutes, kite tails. Etc.
As a result, more Drag usually induces the autorotation spin characteristics of a straight-wing aircraft on the downgoing wing and More Lift on the up-going wing.
Answer:
The corresponding absolute pressure of the boiler is 24.696 pounds per square inch.
Explanation:
From Fluid Mechanics, we remember that absolute pressure (
), measured in pounds per square inch, is the sum of the atmospheric pressure and the working pressure (gauge pressure). That is:
(1)
Where:
- Atmospheric pressure, measured in pounds per square inch.
- Working pressured of the boiler (gauge pressure), measured in pounds per square inch.
If we suppose that
and
, then the absolute pressure is:


The corresponding absolute pressure of the boiler is 24.696 pounds per square inch.