Answer:
i want coins sorry use a calculator or sum
Explanation:
kk
Answer:

Explanation:
From the information given:
Life requirement = 40 kh = 40 
Speed (N) = 520 rev/min
Reliability goal
= 0.9
Radial load
= 2600 lbf
To find C10 value by using the formula:

where;


The Weibull parameters include:



∴
Using the above formula:


![C_{10} = 3640 \times \bigg[\dfrac{1248}{0.9933481582}\bigg]^{\dfrac{3}{10}}](https://tex.z-dn.net/?f=C_%7B10%7D%20%3D%203640%20%5Ctimes%20%5Cbigg%5B%5Cdfrac%7B1248%7D%7B0.9933481582%7D%5Cbigg%5D%5E%7B%5Cdfrac%7B3%7D%7B10%7D%7D)

Recall that:
1 kN = 225 lbf
∴


Answer:
like a mountain place thanks #careonlearning
Answer:
COP = 3.828
W' = 39.18 Kw
Explanation:
From the table A-11 i attached, we can find the entropy for the state 1 at -20°C.
h1 = 238.43 KJ/Kg
s1 = 0.94575 KJ/Kg.K
From table A-12 attached we can do the same for states 3 and 4 but just enthalpy at 800 KPa.
h3 = h4 = hf = 95.47 KJ/Kg
For state 2, we can calculate the enthalpy from table A-13 attached using interpolation at 800 KPa and the condition s2 = s1. We have;
h2 = 275.75 KJ/Kg
The power would be determined from the energy balance in state 1-2 where the mass flow rate will be expressed through the energy balance in state 4-1.
W' = m'(h2 - h1)
W' = Q'_L((h2 - h1)/(h1 - h4))
Where Q'_L = 150 kW
Plugging in the relevant values, we have;
W' = 150((275.75 - 238.43)/(238.43 - 95.47))
W' = 39.18 Kw
Formula foe COP is;
COP = Q'_L/W'
COP = 150/39.18
COP = 3.828