Answer:
Yes. YES yes yes. Unless you are in Australia or something.
Answer: downward velocity = 6.9×10^-4 cm/s
Explanation: Given that the
Diameter of the smoke = 0.05 mm = 0.05/1000 m = 5 × 10^-5 m
Where radius r = 2.5 × 10^-5 m
Density = 1200 kg/m^3
Area of a sphere = 4πr^2
A = 4 × π× (2.5 × 10^-5)^2
A = 7.8 × 10^-9 m^2
Volume V = 4/3πr^3
V = 4/3 × π × (2.5 × 10^-5)^3
V = 6.5 × 10^-14 m^3
Since density = mass/ volume
Make mass the subject of formula
Mass = density × volume
Mass = 1200 × 6.5 × 10^-14
Mass M = 7.9 × 10^-11 kg
Using the formula
V = sqrt( 2Mg/ pCA)
Where
g = 9.81 m/s^2
M = mass = 7.9 × 10^-11 kg
p = density = 1200 kg/m3
C = drag coefficient = 24
A = area = 7.8 × 10^-9m^2
V = terminal velocity
Substitute all the parameters into the formula
V = sqrt[( 2 × 7.9×10^-11 × 9.8)/(1200 × 24 × 7.8×10^-9)]
V = sqrt[ 1.54 × 10^-9/2.25×10-4]
V = 6.9×10^-6 m/s
V = 6.9 × 10^-4 cm/s
Answer:
a) it is periodic
N = (20/3)k = 20 { for K =3}
b) it is Non-Periodic.
N = ∞
c) x(n) is periodic
N = LCM ( 5, 20 )
Explanation:
We know that In Discrete time system, complex exponentials and sinusoidal signals are periodic only when ( 2π/w₀) ratio is a rational number.
then the period of the signal is given as
N = ( 2π/w₀)K
k is least integer for which N is also integer
Now, if x(n) = x1(n) + x2(n) and if x1(n) and x2(n) are periodic then x(n) will also be periodic; given N = LCM of N1 and N2
now
a) cos(2π(0.15)n)
w₀ = 2π(0.15)
Now, 2π/w₀ = 2π/2π(0.15) = 1/(0.15) = 1×20 / ( 0.15×20) = 20/3
so, it is periodic
N = (20/3)k = 20 { for K =3}
b) cos(2n);
w₀ = 2
Now, 2π/w₀ = 2π/2) = π
so, it is Non-Periodic.
N = ∞
c) cos(π0.3n) + cos(π0.4n)
x(n) = x1(n) + x2(n)
x1(n) = cos(π0.3n)
x2(n) = cos(π0.4n)
so
w₀ = π0.3
2π/w₀ = 2π/π0.3 = 2/0.3 = ( 2×10)/(0.3×10) = 20/3
∴ N1 = 20
AND
w₀ = π0.4
2π/w₀ = 2π/π0. = 2/0.4 = ( 2×10)/(0.4×10) = 20/4 = 5
∴ N² = 5
so, x(n) is periodic
N = LCM ( 5, 20 )
Answer:
brake fade. loss of brake effectiveness due to overheating.
Explanation: