1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goldfiish [28.3K]
3 years ago
11

All planets have magnetic fields. T or F

Physics
2 answers:
ra1l [238]3 years ago
8 0

Answer:

No, not all planets have magnetic fields.

Explanation:

icang [17]3 years ago
6 0

Answer:

F

Explanation:

only earth has a strong magnetic field

You might be interested in
A lizard accelerates from 2 m/s to 10 m/s in 4 seconds. what is the lizard average acceleration
VLD [36.1K]

Acceleration = (change in speed) / (time for the change)

change in speed = (ending speed) - (starting speed)

change in speed = (10 m/s) - (2 m/s)  =  8 m/s

Acceleration = (8 m/s) / (4 sec)

Acceleration = (8/4) (m/s²)

<em>Acceleration = 2 m/s²</em>

8 0
3 years ago
Can you answer the question
Dominik [7]
Can u show the whole question plz
3 0
3 years ago
PLS ANSWER ASAP!!
Molodets [167]

b) between poles M1 and M2

Explanation:

From the expression, we can deduce that r is the distance between two magnetic poles M1 and M2.

The law of attraction between two magnetic poles states that:

<em>  the force of attraction or repulsion between two magnetic poles is a function of the product of the strength of the magnetic poles and the square of the distance between the pole</em>s

 

    Mathematically:

            FM = K \frac{M1 M2}{r^{2} }

 here r is the distance between the poles

  FM is the magnetic force between the poles

   M1 is the strength of the first magnetic pole

   M2 is the strength of the second pole

   K is the magnetic field constant

learn more:

magnetic pole brainly.com/question/2191993

#learnwithBrainly

8 0
3 years ago
What is the moment of inertia of an object that rolls without slipping down a 3.5-m- high incline starting from rest, and has a
Daniel [21]

Answer:

I = 0.287 MR²

Explanation:

given,

height of the object = 3.5 m

initial velocity = 0 m/s

final velocity  = 7.3 m/s

moment of inertia = ?

Using total conservation of mechanical energy

change in potential energy will be equal to change in KE (rotational) and KE(transnational)

PE = KE(transnational) + KE (rotational)

mgh = \dfrac{1}{2}mv^2 + \dfrac{1}{2}I\omega^2

v = r ω

mgh = \dfrac{1}{2}mv^2 + \dfrac{1}{2}\dfrac{Iv^2}{r^2}

I = \dfrac{m(2gh - v^2)r^2}{v^2}

I = \dfrac{mr^2(2\times 9.8 \times 3.5 - 7.3^2)}{7.3^2}

I =mr^2(0.287)

I = 0.287 MR²

3 0
3 years ago
Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula.
sveta [45]

Answer:

the two ice skater have the same momentum but the are in different directions.

Paula will have a greater speed than Ricardo after the push-off.

Explanation:

Given that:

Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula.

A. Which skater, if either, has the greater momentum after the push-off? Explain.

The law of conservation of can be applied here in order to determine the skater that possess a greater momentum after the push -off

The law of conservation of momentum states that the total momentum of two  or more objects acting upon one another will not change, provided there are no external forces acting on them.

So if two objects in motion collide, their total momentum before the collision will be the same as the total momentum after the collision.

Momentum is the product of mass and velocity.

SO, from the information given:

Let represent the mass of Paula with m_{Pa} and its initial velocity with u_{Pa}

Let represent the mass of Ricardo with m_{Ri} and its initial velocity with u_{Ri}

At rest ;

their velocities will be zero, i.e

u_{Pa} = u_{Ri} = 0

The initial momentum for this process can be represented as :

m_{Pa}u_{Pa} +  m_{Ri}u_{Ri} = 0

after push off from each other then their final velocity will be v_{Pa} and v_{Ri}

The we can say their final momentum is:

m_{Pa}v_{Pa} +   m_{Ri}v_{Ri} = 0

Using the law of conservation of momentum as states earlier.

Initial momentum = final momentum = 0

m_{Pa}u_{Pa} +  m_{Ri}u_{Ri} =  m_{Pa}v_{Pa} +   m_{Ri}v_{Ri}

Since the initial velocities are stating at rest then ; u = 0

m_{Pa}(0) + m_{Pa}(0) = m_{Pa}v_{Pa} +   m_{Ri}v_{Ri}

m_{Pa}v_{Pa} +   m_{Ri}v_{Ri}  = 0

m_{Pa}v_{Pa} = - m_{Ri}v_{Ri}

Hence, we can conclude that the two ice skater have the same momentum but the are in different directions.

 B. Which skater, if either, has the greater speed after the push-off? Explain.

Given that Ricardo weighs more than Paula

So m_{Ri} > m_{Pa} ;

Then \mathsf{\dfrac{{m_{Ri}}}{m_{Pa} }= 1}

The magnitude of their momentum which is a product of mass and velocity can now be expressed as:

m_{Pa}v_{Pa} =  m_{Ri}v_{Ri}

The ratio is

\dfrac{v_{Pa}}{v_{Ri}} =\dfrac{m_{Ri}}{m_{Pa}} = 1

v_{Pa} >v_{Ri}

Therefore, Paula will have a greater speed than Ricardo after the push-off.

6 0
3 years ago
Other questions:
  • F your muscles are not getting enough oxygen during exercise, they will stop moving.
    14·2 answers
  • Train cars are coupled together by being bumped into one another. Suppose two loaded train cars are moving toward one another, t
    5·1 answer
  • What two organelles should be labeled that WOULD NOT be found in an animal cell?
    7·1 answer
  • What would be the result of voltage while joining 2 or more different voltages of batteries with parallel ? and explain me what
    6·1 answer
  • What component is brass and copper
    5·1 answer
  • Parallel to the handle, what is the force of friction acting on the suitcase?
    6·1 answer
  • Only about 50% of the solar energy directed toward Earth penetrates directly to the surface. Explain what happens to the rest of
    6·2 answers
  • If a car is moving at a constant velocity of 10 m/s, what is its acceleration?
    5·1 answer
  • A batter hits a fastball with a mass of 0.145 kg that was traveling at 40.0 m/s; the force exerted by the bat on the ball is 29
    13·1 answer
  • HELP MEEEE!!!!!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!