Nitrogen fixing bacteria changes dead plants and animals into ammonia compounds.
<h2>What is nitrogen fixation?</h2>
Atmospheric nitrogen is converted into nitrogen oxides by the action of lightning, which helps its incorporation into the soil.
<h3>Characteristics of Nitrogen fixing bacteria</h3>
- Nitrogen is fixed by these bacteria and other prokaryotes through various metabolic processes, which convert it into different usable compounds, such as ammonia (NH3) and ammonium ion (NH4+).
- These microorganisms can be found in soil and water, or as plant symbionts.
Therefore, we can conclude that nitrogen fixing bacteria fix nitrogen from the air, that is, they originate soluble compounds by plants, such as ammonia.
Learn more about nitrogen fixation here: brainly.com/question/14726009
Answer:
The ocean tides on earth are caused by both the moon's gravity and the sun's gravity. ... Even though the sun is much more massive and therefore has stronger overall gravity than the moon, the moon is closer to the earth so that its gravitational gradient is stronger than that of the sun.
Find the horizontal components vcos30 ...one goes right and one goes left so they cancel each other.
Find vertical components vsin30.....there are two of them.... so 2vcos30....hey presto... resultant velocity = 2vCos30
If iodine is added to a starch solution, they react with each other and the iodine darkens to an almost pitch black.
however, if iodine is added to a solution containing no starch, it will show up only as an extremely pale brown. almost colorless and hardly visible.
when following the changes in some inorganic oxidation reduction reactions, iodine may be used as an indicator to follow the changes of iodide ion and iodine element. soluble starch solution is added. only iodine element in the presence of iodide ion will give the characteristic blue black color. neither iodine element alone nor iodide ions alone will give the color result.
hope this answer really helps your question :)
Answer:
Valence electrons are outer shell electrons with an atom and can participate in the formation of chemical bonds. In single covalent bonds, typically both atoms in the bond contribute one valence electron in order to form a shared pair. The ground state of an atom is the lowest energy state of the atom.