Answer:
Mercury / Mars
Explanation:
For an object launched straight upward, the following SUVAT equation can be used

where
v is the final velocity
u is the initial velocity
g is the acceleration of gravity (free fall acceleration) (the negative sign is due to the downward direction of gravity)
h is the maximum height reached
At the maximum height, the velocity is zero, so v = 0. Re-arranging the equation,

So we see that for equal initial velocity (u), the maximum height reaches is inversely proportional to the acceleration of gravity. Therefore, the potato gun will reach the highest altitude in the planets with lowest acceleration of gravity, therefore Mercury and Mars (3.7 and 3.6 m/s^2).
Answer:
0.78m/s
Explanation:
We are given that
Acceleration=
v=0, s=1 when t=0
We have to find the particle's velocity at s=2m
We know that




By using formula:

Substitute s=2




Hence, the velocity of particle at s=2m=0.78m/s
substitution is the type of mutation that occurred
(a) For the work-energy theorem, the work done to lift the can of paint is equal to the gravitational potential energy gained by it, therefore it is equal to

where m=3.4 kg is the mass of the can, g=9.81 m/s^2 is the gravitational acceleration and
is the variation of height. Substituting the numbers into the formula, we find

(b) In this case, the work done is zero. In fact, we know from its definition that the work done on an object is equal to the product between the force applied F and the displacement:

However, in this case there is no displacement, so d=0 and W=0, therefore the work done to hold the can stationary is zero.
(c) In this case, the work done is negative, because the work to lower the can back to the ground is done by the force of gravity, which pushes downward. Its value is given by the same formula used in part (a):

Latent heat, energy absorbed or released by a substance during a change in its physical state (phase) that occurs without changing its temperature.