Answer:
b) 2.0 mol
Explanation:
Given data:
Number of moles of Ca needed = ?
Number of moles of water present = 4.0 mol
Solution:
Chemical equation:
Ca + 2H₂O → Ca(OH)₂ + H₂
now we will compare the moles of Ca and H₂O .
H₂O : Ca
2 : 1
4.0 : 1/2×4.0 = 2.0 mol
Thus, 2 moles of Ca are needed.
Answer:
0.9715 Fraction of Pu-239 will be remain after 1000 years.
Explanation:


Where:
= decay constant
=concentration left after time t
= Half life of the sample
Half life of Pu-239 =
[
![\lambda =\frac{0.693}{24,000 y}=2.8875\times 10^{-5} y^{-1]](https://tex.z-dn.net/?f=%5Clambda%20%3D%5Cfrac%7B0.693%7D%7B24%2C000%20y%7D%3D2.8875%5Ctimes%2010%5E%7B-5%7D%20y%5E%7B-1%5D)
Let us say amount present of Pu-239 today = 
A = ?
![A=x\times e^{-2.8875\times 10^{-5} y^{-1]\times 1000 y}](https://tex.z-dn.net/?f=A%3Dx%5Ctimes%20e%5E%7B-2.8875%5Ctimes%2010%5E%7B-5%7D%20y%5E%7B-1%5D%5Ctimes%201000%20y%7D)


0.9715 Fraction of Pu-239 will be remain after 1000 years.
This is a incomplete question. The complete question is:
It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits
Answer: 344 nm
Explanation:
E= energy = 348kJ= 348000 J (1kJ=1000J)
N = avogadro's number = 
h = Planck's constant = 
c = speed of light = 

Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm
A. 0.12 (mol/L)/s
rate = 1 x 10-2 • 2^2 • 3
Answer:
The pH is 7.54
Explanation:
The Henderson - Hasselbalch equation states that for a buffer solution which consists of a weak acid and its conjugate base, the buffer pH is given by:
pH ![=pk_{a} +log(\frac{[conjugate base]}{[weakacid]})](https://tex.z-dn.net/?f=%3Dpk_%7Ba%7D%20%2Blog%28%5Cfrac%7B%5Bconjugate%20base%5D%7D%7B%5Bweakacid%5D%7D%29)
pkₐ is for the acid
In this case, the buffer hypochlorous acid HClO is a weak acid, and its conjugate base is the hypochlorite anion ClO⁻ is delivered to the solution via sodium hypochlorite NaClO
.
NaCIO = 0.200 M
HCIO = 0.200 M
pkₐ = -log₁₀ kₐ = -log₁₀ (2.9 × 10⁻⁸) = 7.54
∴pH =
= 7.54