It would be 20 give me bravest
Answer:
10.87 g of Ethyl Butyrate
Solution:
The Balance Chemical Equation is as follow,
H₃C-CH₂-CH₂-COOH + H₃C-CH₂-OH → H₃C-CH₂-CH₂-COO-CH₂-CH₃ + H₂O
According to equation,
88.11 g (1 mol) Butanoic Acid produces = 116.16 g (1 mol) Ethyl Butyrate
So,
8.25 g Butanoic Acid will produce = X g of Ethyl Butyrate
Solving for X,
X = (8.25 g × 116.16 g) ÷ 88.11 g
X = 10.87 g of Ethyl Butyrate
Answer:
Molarity of NaOH solution is 1.009 M
Explanation:
Molar mass of HCl is 36.46 g/mol
Number moles = (mass)/(molar mass)
So, 0.8115 g of HCl =
HCl = 0.02226 moles HCl
1 mol of NaOH neutralizes 1 mol of HCl.
So, if molarity of NaOH solution is S(M) then moles of NaOH required to reach endpoint is 
So, 
or, S = 1.009
So, molarity of NaOH solution is 1.009 M
Answer:
0.054 mol O
Explanation:
<em>This is the chemical formula for acetic acid (the chemical that gives the sharp taste to vinegar): CH₃CO₂H. An analytical chemist has determined by measurements that there are 0.054 moles of carbon in a sample of acetic acid. How many moles of oxygen are in the sample?</em>
<em />
Step 1: Given data
- Chemical formula of acetic acid: CH₃CO₂H
- Moles of carbon in the sample: 0.054 moles
Step 2: Establish the appropriate molar ratio
According to the chemical formula, the molar ratio of C to O is 2:2.
Step 3: Calculate the moles of oxygen in the sample
We will use the molar ratio to determine the moles of oxygen accompanying 0.054 moles of carbon.
0.054 mol C × (2 mol O/2 mol C) = 0.054 mol O