
As long as the equation in question can be expressed as the sum of the three equations with known enthalpy change, its
can be determined with the Hess's Law. The key is to find the appropriate coefficient for each of the given equations.
Let the three equations with
given be denoted as (1), (2), (3), and the last equation (4). Let
,
, and
be letters such that
. This relationship shall hold for all chemicals involved.
There are three unknowns; it would thus take at least three equations to find their values. Species present on both sides of the equation would cancel out. Thus, let coefficients on the reactant side be positive and those on the product side be negative, such that duplicates would cancel out arithmetically. For instance,
shall resemble the number of
left on the product side when the second equation is directly added to the third. Similarly
Thus
and

Verify this conclusion against a fourth species involved-
for instance. Nitrogen isn't present in the net equation. The sum of its coefficient shall, therefore, be zero.

Apply the Hess's Law based on the coefficients to find the enthalpy change of the last equation.

Answer:
995.313KW
Explanation:
the explanation is in the picture
please like and Mark as brainliest
Answer:

Explanation:
The volume and amount of gas are constant, so we can use Gay-Lussac’s Law:
At constant volume, the pressure exerted by a gas is directly proportional to its temperature.

Data:
p₁ =5.7 atm; T₁ = 100.0 °C
p₂ = ?; T₂ = 20.0 °C
Calculations:
1. Convert the temperatures to kelvins
T₁ = (100.0 + 273.15) K = 373.15
T₂ = (20.0 + 273.15) K = 293.15
2. Calculate the new pressure

9 grams of hydrogen gas (H2) will SC Johnson need to react in order to make 1 bottle of Windex.
Explanation:
Balance equation for the formation of ammonia from H2 gas.
N2 + 3H2 ⇒ 2 
Given
mass of ammonia in 1 bottle of windex = 51 gram
atomic mass of ammonia 17.01 gram/mole
number of moles = 
number of moles = 
= 3 moles of ammonia is formed.
in 1 bottle of windex there are 3 moles of ammonia 0r 51 grams of ammonia.
From the equation it can be found that:
3 moles of hydrogen reacted to form 2 moles of ammonia
so, x moles of hydrogen will react to form 3 moles of ammonia.
= 
x = 4.5 moles of hydrogen will be required.
to convert moles into gram formula used:
mass = atomic mass x number of moles (atomic mass of H2 is 2grams/mole)
= 2 x 4.5
= 9 grams of hydrogen.
Answer:
Explanation:
Molarity = number of moles / volume
If 550 mL of a 3.50 M KCl solution are set aside and allowed to evaporate until the volume of the solution is 275 mL, which is half of 550 mL, the molarity of the solution with the same number of moles of KCl is 3.5 * 2 = 7.00 M