Answer:
a = 6.1 m / s²
Explanation:
For this kinematics exercise, to solve the exercise we must set a reference system, we place it in the initial position of the fastest vehicle
Let's find the relative initial velocity of the two vehicles
v₀ = v₀₂ - v₀₁
v₀ = 25.4 - 13.6
v₀ = 11.8 m / s
the fastest vehicle
x = v₀ t + ½ a t²
The faster vehicle has an initial speed relative to the slower vehicle, therefore it is as if the slower vehicle were stopped, so the distance that must be traveled in a fast vehicle to reach this position is
x = 11.4 m
let's use the expression
v² = v₀² - 2 a x
how the vehicle stops v = 0
a = v₀² / 2x
a =
a = 6.1 m / s²
this velocity is directed to the left
Answer:
Potential Energy = x = m g h
Kinetic energy = 1/2 m v^2
Assuming the mass fall from rest
1/2 m v^2 = m g h
v^2 = 2 g h
So the speed attained is independent of the mass
Also, x / v does not have the units of mass
So the solution is none of the above.
Answer:
v = c / n (n = 1 for air)
v = c / 1.33 = 3 * 10E8 m/s / 1.33 = 2.25 * 10E8 m/s
The speed of a wave is dependant on four factors: wavelength, frequency, medium, and temperature.