We can solve the problem by using Newton's second law of motion:
where
F is the net force applied to the object
m is the object's mass
a is the acceleration of the object
In this problem, the force applied to the car is F=1050 N, while the mass of the car is m=760 kg. Therefore, we can rearrange the equation and put these numbers in, in order to find the acceleration of the car:
The equation also tells us that the acceleration and the force have same directions: therefore, since the force exerted on the car is horizontal, the correct answer is
<span>
B) 1.4 m/s2 horizontally.</span>
Answer: n=4
Explanation:
We have the following expression for the volume flow rate of a hypodermic needle:
(1)
Where the dimensions of each one is:
Volume flow rate
Radius of the needle
Length of the needle
Pressures at opposite ends of the needle and
Viscosity of the liquid
We need to find the value of whicha has no dimensions, and in order to do this, we have to rewritte (1) with its dimensions:
(2)
We need the right side of the equation to be equal to the left side of the equation (in dimensions):
(3)
(4)
As we can see must be 4 if we want the exponent to be 3:
(5)
Finally:
(6)
Answer:
2156 J
Explanation:
From the question,
Work done = Combined mass of the bucket and water×height×gravity.
W = (M+m)hg............................. Equation 1
Where M = mass of water, m = mass of the bucket, h = height, g = acceleration due to gravity.
Given: M = 20 kg, m = 2 kg, h = 10 m
Constant: g = 9.8 m/s²
Substitute these value into equation 1
W = (20+2)×10×9.8
W = 22×98
W = 2156 J