Answer:
We cannot place three forces of 5g, 6g, and 12g in equilibrium.
Explanation:
Equilibrium means their sum must be zero.
Here the forces are 5g, 6g, and 12g.
For number of forces to be in equilibrium the magnitude of largest vector should be less than sum of the magnitude of other vectors.
Here
Magnitude of largest force = 12 g
Sum of magnitudes of other forces = 5g + 6g = 11g
Magnitude of largest force > Sum of magnitudes of other forces
So this forces cannot form equilibrium.
We cannot place three forces of 5g, 6g, and 12g in equilibrium.
<span>The electric force is given by:
F = [ k*(q1)*(q2) ] / d^2
F = Electric force
k = Coulomb's constant
q1 = Charge of one proton
q2 = Charge of second proton
d = Distance between centers of mass
Values:
F = unknown
k = 8.98E 9 N-m^2/C^2
q1 = 1.6E-19
q2 = 1.6E-19
d = 1.0E-15 m
Insert values into F = [ k*(q1)*(q2) ] / d^2
F = [ (8.98E 9 N-m^2/C^2) * (1.6E-19) * (1.6E-19) ] / (1.0E-15 m)^2
F = </span>229.888 N
answer
the electric force of repulsion between nuclear protons is 229.888 N
The Newton is defined as the:
C. Force that can give a 1-kilogram mass an acceleration of 1m/sec squared.
<h3>Hope it helps..</h3>
ray4918 here
E concave mirror because it reflects the light