We know that:
1 mile = 1.61 km
1 gal = 3.8 L
Therefore converting the fuel efficiency rates:
highway = (28.5 km/L) * (1 mile / 1.61 km) * (3.8 L / 1
gal) = 67.27 mile / gal
<span>city = (22.0 km/L) * (1 mile / 1.61 km) * (3.8 L / 1 gal)
= 51.93 mile / gal</span>
Answers are supposed to be here, so i will say motor. please put answers here next time
Plant cells are eukaryotic cells that differ in several key aspects from the cells of other eukaryotic organisms. number two sry but Idk
:(
Maybe this would help understand it better.
<span>Tectonic plates can transport both continental crust and oceanic crust, or they may be made of only one kind of crust. Oceanic crust is denser than continental crust. At a subduction zone, the oceanic crust usually sinks into the mantle beneath lighter continental crust</span>
Answer:
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Explanation:
Hi there!
The equations of height and velocity of the ball are the following:
y = y0 + v0 · t + 1/2 · g · t²
v = v0 + g · t
Where:
y = height at time t.
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity (-9.81 m/s² considering the upward direction as positive).
v = velocity of the ball at time t.
Placing the origin at the throwing point, y0 = 0.
Let´s use the equation of velocity to obtain the time at which the velocity is 12.0 m/s / 2 = 6.00 m/s.
v = v0 + g · t
6.00 m/s = 12.0 m/s -9.81 m/s² · t
(6.00 - 12.0)m/s / -9.81 m/s² = t
t = 0.612 s
Now, let´s calculate the height of the baseball at that time:
y = y0 + v0 · t + 1/2 · g · t² (y0 = 0)
y = 12.0 m/s · 0.612 s - 1/2 · 9.81 m/s² · (0.612 s)²
y = 5.51 m
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Have a nice day!