Answer:
The right wall surface temperature and heat flux through the wall is 35.5°C and 202.3W/m²
Explanation:
Thickness of the wall is L= 20cm = 0.2m
Thermal conductivity of the wall is K = 2.79 W/m·K
Temperature at the left side surface is T₁ = 50°C
Temperature of the air is T = 22°C
Convection heat transfer coefficient is h = 15 W/m2·K
Heat conduction process through wall is equal to the heat convection process so

Expression for the heat conduction process is

Expression for the heat convection process is

Substitute the expressions of conduction and convection in equation above


Substitute the values in above equation

Now heat flux through the wall can be calculated as

Thus, the right wall surface temperature and heat flux through the wall is 35.5°C and 202.3W/m²
Hello!
Answer: 7918 J
Explanation:
We are assuming that the floor (field) is completely horizontal since there's no information about that in the statement.
We are going to use the following formula:

Where:


º

Then, by substituting we have:

Explanation:
To be accurate, it must be able to make measurements that are close to the actual value.
Answer:
x = 0.0537 m or 5.37 cm
Explanation:
Given:
spring constant'k'= 4900 N/m
radius 'r' =0.029 m
Area 'A' =r²π = 0.029²π => 2.6 x
m²
Here, Pressure 'P' is given by,
Pressure = Force / Area
And we know that, for a spring :
F = kx, where k is the spring constant and x is the change in length.
P = kx/A
As P = 101325 Pa
101325 = 4900x / ( 2.6 x
)
x = 0.0537 m or 5.37 cm
The spring has been stretched 0.701 m
Explanation:
The elastic potential energy of a spring is the potential energy stored in the spring due to its compression/stretching. It is calculated as

where
k is the spring constant
x is the elongation of the spring with respect to its equilibrium position
For the spring in this problem, we have:
E = 84.08 J (potential energy)
k = 342.25 N/m (spring constant)
Therefore, its elongation is:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly