The two s Orbital electrons and one d orbital electron, are the electrons that are lost by an atom of Iron when it forms the Fe3 + ion.
The given sentence is part of a longer question.
I found this question with the same sentence. So, I will help you using this question:
For the reaction N2O4<span>(g) ⇄ 2NO</span>2(g), a reaction mixture at a certain temperature initially contains both N2O4 and NO2 in their standard states (meaning they are gases with a pressure of 1 atm<span>). If </span>Kp = 0.15, which statement is true of the reaction mixture before
any reaction occurs?
(a) Q = K<span>; The reaction </span>is at equilibrium.
(b) Q < K<span>;
The reaction </span>will proceed to
the right.
(c) Q > K<span>; The reaction </span>will proceed to the left.
The answer is the option (c) Q > K<span>; The reaction will proceed to the </span>left,
since Qp<span> = </span>1<span>, and 1 > 0.15.</span>
Explanation:
Kp is the equilibrium constant in term of the partial pressures of the gases.
Q is the reaction quotient. It is a measure of the progress of a chemical reaction.
The reaction quotient has the same form of the equilibrium constant but using the concentrations or partial pressures at any moment.
At equilibrium both Kp and Q are equal. Q = Kp
If Q < Kp then the reaction will go to the right (forward reaction) trying to reach the equilibrium,
If Q > Kp then the reaction will go to the left (reverse reaction) trying to reach the equilibrium.
Here, the state is that both pressures are 1 atm, so Q = (1)^2 / 1 = 1.
Since, Q = 1 and Kp = 0.15, Q > Kp and the reaction will proceed to the left.
Answer:
The final temperature is:- 7428571463.57 °C
Explanation:
The expression for the calculation of heat is shown below as:-
Where,
is the heat absorbed/released
m is the mass
C is the specific heat capacity
is the temperature change
Thus, given that:-
Mass of water = 1.75 mg = 0.00175 g ( 1 g = 0.001 mg)
Specific heat of water = 4.18 J/g°C
Initial temperature = 35 °C
Final temperature = x °C
kcal
Also, 1 kcal = 4.18 kJ =
J
So, Q =
J = 54340000 J
So,

Thus, the final temperature is:- 7428571463.57 °C
Answer:
Qm = -55.8Kj/mole
Explanation:
NaOH(aq) + HNO₃(aq) => NaNO₃(aq) + H₂O(l)
Qm = (mc∆T)water /moles acid
Given => 100ml(0.300M) NaOH(aq) + 100ml(0.300M)HNO₃(aq)
=> 0.03mole NaOH(aq) + 0.03mole HNO₃(aq)
=> 0.03mole NaNO₃(aq) + 0.03mole H₂O(l)
ΔH⁰rxn = [(200ml)(1.00cal/g∙°C)(37 – 35)°C]water / 0.03mole HNO₃
= 13,333 cal/mole x 4.184J/cal = 55,787J/mol = 55.8Kj/mole (exothermic)*
Heat of reactions comes from formation of H-Oxy bonds on formation of water of reaction and heats the 200ml of solvent water from 35⁰C to 37⁰C.
Helium only possesses two valence electrons, while the other noble gasses posses eight