1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis-greek [22]
3 years ago
9

Find the True statement

Engineering
2 answers:
dmitriy555 [2]3 years ago
6 0

Answer:

Option A is correct ( Stress relaxation is time- and temperature-dependent).

Explanation:

Luda [366]3 years ago
6 0

Answer:

Option A is correct.

The only completely true statement in all of the available options is that "Stress relaxation is time- and temperature-dependent"

Explanation:

Stress relaxation is the constant decrease of stress with time in a material which is exposed to a constant strain at a constant temperature.

It is similar in concept to vaccination; in that, the material is being prepared to be able to undergo a particular amount of stress at a specific temperature in order to make the stress levels in the material lower than it usually should be.

It is evident that stress relaxation, (the extent), in a material completely depends on the amount of time that the constant strain is applied and the temperature at which this whole process occurs.

Polymers always have a melting temperature.

While it is true that almost all materials can melt. For Polymers, it is not necessarily true that the melting takes place at a constant temperature. In very complex Polymers, melting occurs over an appreciable range of temperature, not sharply as in some simple polymers.

Hence, polymers don't always have a melting temperature, some polymers melt over a range of temperature. So, this statement isn't completely true.

Polyethylene becomes weaker if H is replaced with other radicals inside branches.

This also is a statement that isn't always true. Replacing the H in some of the branches of polyethylene with radicals such as the carboxylic group, the hydroxyl group etc., have been shown to seriously strengthen the polyethylene. Polymers formed by replacing the H with ion-Like radicals are known as ionomers.

These groups have a polarity, hence, they are drawn together by their charges, come together in microdomains, toughening and strengthening the polyethylene without taking its ability to be cast to permanent shapes away.

This statement isn't always true too.

Crazing indicates cracks inside the polymer.

This is also false. Crazing doesn't indicate cracks in materials. What it does is that Crazing precedes the cracks.

Crazing is a phenomenon that entails the formation of microvoids in a material in response to excessive tensile stress being applied to the material. The microvoids (which forms in a plane normal to the tensile stress that caused them) often leads to cracks or fracture later.

So, Crazing doesn't indicate cracks, rather, it precedes them in most cases.

Hope this Helps!!!

You might be interested in
All of the dimensions on an aircraft drawing are_________<br> to the bottom of the drawing.
Jet001 [13]
All of the dimensions on an aircraft drawing are _________ to the bottom of the drawing


Answer: parallel
7 0
2 years ago
Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba
Tpy6a [65]

Answer:

Among all three tools, the ceramic tool is taking the least time for the production of a batch, however, machining from the HSS tool is taking the highest time.

Explanation:

The optimum cutting speed for the minimum cost

V_{opt}= \frac{C}{\left[\left(T_c+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]^n}\;\cdots(i)

Where,

C,n = Taylor equation parameters

T_h =Tool changing time in minutes

C_e=Cost per grinding per edge

C_m= Machine and operator cost per minute

On comparing with the Taylor equation VT^n=C,

Tool life,

T= \left[ \left(T_t+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]}\;\cdots(ii)

Given that,  

Cost of operator and machine time=\$40/hr=\$0.667/min

Batch setting time = 2 hr

Part handling time: T_h=2.5 min

Part diameter: D=73 mm =73\times 10^{-3} m

Part length: l=250 mm=250\times 10^{-3} m

Feed: f=0.30 mm/rev= 0.3\times 10^{-3} m/rev

Depth of cut: d=3.5 mm

For the HSS tool:

Tool cost is $20 and it can be ground and reground 15 times and the grinding= $2/grind.

So, C_e= \$20/15+2=\$3.33/edge

Tool changing time, T_t=3 min.

C= 80 m/min

n=0.130

(a) From equation (i), cutting speed for the minimum cost:

V_{opt}= \frac {80}{\left[ \left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]^{0.13}}

\Rightarrow 47.7 m/min

(b) From equation (ii), the tool life,

T=\left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]}

\Rightarrow T=53.4 min

(c) Cycle time: T_c=T_h+T_m+\frac{T_t}{n_p}

where,

T_m= Machining time for one part

n_p= Number of pieces cut in one tool life

T_m= \frac{l}{fN} min, where N=\frac{V_{opt}}{\pi D} is the rpm of the spindle.

\Rightarrow T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 47.7}=4.01 min/pc

So, the number of parts produced in one tool life

n_p=\frac {T}{T_m}

\Rightarrow n_p=\frac {53.4}{4.01}=13.3

Round it to the lower integer

\Rightarrow n_p=13

So, the cycle time

T_c=2.5+4.01+\frac{3}{13}=6.74 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times6.74+\frac{3.33}{13}=\$4.75/pc

(e) Total time to complete the batch= Sum of setup time and production time for one batch

=2\times60+ {50\times 6.74}{50}=457 min=7.62 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times4.01}{457}=0.4387=43.87\%

Now, for the cemented carbide tool:

Cost per edge,

C_e= \$8/6=\$1.33/edge

Tool changing time, T_t=1min

C= 650 m/min

n=0.30

(a) Cutting speed for the minimum cost:

V_{opt}= \frac {650}{\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]^{0.3}}=363m/min [from(i)]

(b) Tool life,

T=\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]=7min [from(ii)]

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 363}=0.53min/pc

n_p=\frac {7}{0.53}=13.2

\Rightarrow n_p=13 [ nearest lower integer]

So, the cycle time

T_c=2.5+0.53+\frac{1}{13}=3.11 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times3.11+\frac{1.33}{13}=\$2.18/pc

(e) Total time to complete the batch=2\times60+ {50\times 3.11}{50}=275.5 min=4.59 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.53}{275.5}=0.0962=9.62\%

Similarly, for the ceramic tool:

C_e= \$10/6=\$1.67/edge

T_t-1min

C= 3500 m/min

n=0.6

(a) Cutting speed:

V_{opt}= \frac {3500}{\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]^{0.6}}

\Rightarrow V_{opt}=2105 m/min

(b) Tool life,

T=\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]=2.33 min

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 2105}=0.091 min/pc

n_p=\frac {2.33}{0.091}=25.6

\Rightarrow n_p=25 pc/tool\; life

So,

T_c=2.5+0.091+\frac{1}{25}=2.63 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times2.63+\frac{1.67}{25}=$1.82/pc

(e) Total time to complete the batch

=2\times60+ {50\times 2.63}=251.5 min=4.19 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.091}{251.5}=0.0181=1.81\%

3 0
3 years ago
vertical gate in an irrigation canal holds back 12.2 m of water. Find the average force on the gate if its width is 3.60 m. Repo
DanielleElmas [232]

Answer:

The right solution is "2625 kN".

Explanation:

According to the question,

The average pressure will be:

= density\times g\times \frac{h}{2}

By putting values, we get

= 1000\times 9.8\times \frac{12.2}{2}

= 1000\times 9.8\times 6.1

= 59780

hence,

The average force will be:

= Pressure\times Area

= 59780\times 3.6\times 12.2

= 2625537 \ N

Or,

= 2625 \ kN

5 0
2 years ago
A stainless steel ball (=8055 kg/m3, Cp= 480 J/kgK) of diameter D =15 cm is removed from theoven at a uniform temperature of 3
aleksandrvk [35]

Answer:

i) 25.04 W/m^2 .k

ii) 23.82 minutes = 1429.2 secs

Explanation:

Given data:

Diameter of steel ball = 15 cm

uniform temperature = 350°C

p = 8055 kg/m^3

Cp = 480 J/kg.k

surface temp of ball drops to  250°C

average surface temperature = ( 350 + 250 ) / 2 = 300°C

<u>i) Determine the average convection heat transfer coefficient during the cooling process</u>

<em>Note : Obtain the properties of air at 1 atm at average film temp of 30°C from the table  " properties of air "  contained in your textbook</em>

average convection heat transfer coefficient = 25.04 W/m^2 .k

<u>ii) Determine how long this process has taken </u>

Time taken by the process = 23.82 minutes = 1429.2 seconds

Δt = Qtotal / Qavg = 683232 / 477.92 = 1429.59 secs

attached below is the detailed solution of the given question

3 0
3 years ago
The performance of a heat pump degrades (i.e., its COP decreases) as the temperature of the heat source decreases. This makes us
vfiekz [6]

Answer:

COP_max = 18.69

Explanation:

We are given;

Heated space temperature; T_H = 26°C = 273K + 26 = 299K

Temperature at which heat is extracted; T_L = 10°C = 273 + 10 = 283K

Now the Coefficient of performance (COP) of a heat pump will be a maximum when the heat pump operates in a reversible manner. The COP of a reversible heat pump depends on the temperature limits in the cycle only and is determined by the formula;

COP_max = 1/(1 - (T_L/T_H))

Thus,

COP_max = 1/(1 - (283/299))

COP_max = 1/(1 - 0.9465)

COP_max = 1/0.0535 = 18.69

7 0
3 years ago
Other questions:
  • For a p-n-p BJT with NE 7 NB 7 NC, show the dominant current components, with proper arrows, for directions in the normal active
    14·1 answer
  • Which term defines the amount of mechanical work an engine can do per unit of heat energy it uses?
    5·1 answer
  • Explain the differences between planned and predictive maintenance.
    12·1 answer
  • How is TEL (total equivalent length) measured and calculated? .​
    12·1 answer
  • The diameter of an extruder barrel = 85 mm and its length = 2.00 m. The screw rotates at 55 rev/min, its channel depth = 8.0 mm,
    5·1 answer
  • Which source would be the best to base a hypothesis upon
    9·1 answer
  • A pump transfers water from a lake to a reservoir, which is located 29.2 m above the lake, at a rate of 11.5 L/s. Determine the
    12·1 answer
  • 6.3. A __________ is used to indicate the base material that needs to be beveled.
    12·1 answer
  • Overconfidence in more male drivers, particularly those under 25 years old, results in them being involved in crashes.
    14·1 answer
  • It is important to follow correct procedures when running electrical cables next to data cables in order to protect against whic
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!