Answer:
0.0297M^3/s
W=68.48kW
Explanation:
Hello! To solve this problem, we must first find all the thermodynamic properties at the input (state 1) and the compressor output (state 2), using the thermodynamic tables
Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)
through prior knowledge of two other properties such as pressure and temperature.
state 1
X=quality=1
T=-26C
density 1=α1=5.27kg/m^3
entalpy1=h1=234.7KJ/kg
state 2
T2=70
P2=8bar=800kPa
density 2=α2=31.91kg/m^3
entalpy2=h2=306.9KJ/kg
Now to find the flow at the outlet of the compressor, we remember the continuity equation that states that the mass flow is equal to the input and output.
m1=m2
(Q1)(α1)=(Q2)(α2)

the volumetric flow rate at the exit is 0.0297M^3/s
To find the power of the compressor we use the first law of thermodynamics that says that the energy that enters must be equal to the energy that comes out, in this order of ideas we have the following equation
W=m(h2-h1)
m=Qα
W=(0.18)(5.27)(306.9-234.7)
W=68.48kW
the compressor power is 68.48kW
Answer:
a) The rate of heat transfer will be 19.58 Watts.
b) The temperature drop of the hot water will be 0.024 Degree Celcius.
Explanation:
Answer:
of 5 lb/ft and a concentrated service live load at midspan. .... length = 12 feet) to support a uniformly distributed load. Taking ... w 7..'{ 'f.- ~ s-·. 344 ft-kip. Fy : s-o ks I. 299 ft-kip. Li.. ::::- I 2.. }-t-. 150 ft-kip ..... The concrete and reinforcing steel properties are ... Neglecting beam self-weight . and based only on the ...... JI : Lf, 2. l.. ;VI.
Explanation:
Answer:
Engineer A results will be more accurate
Explanation:
Analytical method is better than numerical method. Engineer A has used analytical method and therefore his results will be more accurate because he used simplified method. Engineer B has used software to solve the problem related to heat transfer his results will be approximate.