Answer:
vapor fraction = 0.4 and 0.08
Explanation:
At reasonably high temperatures, a mixture will exist in the form of a sub cooled liquid. Between these extremes, the mixture exists in a two phrase region where it is a vapor liquid equilibrium. From a vapor-liquid phase diagram, a mixture of 40% A, 39% B, and 21% C separates to give the vapor compositions of 0.4 and 0.08.
Answer: Option A is correct -- 2.6 at% Pb and 97.4 at% Sn.
Explanation:
Option A is the only correct option -- 2.6 at% Pb and 97.4 at% Sn. While option B, which is 7.6 at% Pb and 92.4 at% Sn. and option C, which is 97.4 at% Pb and 2.6 at% Sn. and option D, which is 92.4 at% Pb and 7.6 at% Sn. are wrong.
Answer: Attached below is the missing diagram
answer :
A) 1) Wr > WI, 2) Qc' > Qc
B) 1) QH' > QH, 2) Qc' > Qc
Explanation:
л = w / QH = 1 - Qc / QH and QH = w + Qc
<u>A) each cycle receives same amount of energy by heat transfer</u>
<u>(</u> Given that ; Л1 = 1/3 ЛR )
<em>1) develops greater bet work </em>
WR develops greater work ( i.e. Wr > WI )
<em>2) discharges greater energy by heat transfer</em>
Qc' > Qc
solution attached below
<u>B) If Each cycle develops the same net work </u>
<em>1) Receives greater net energy by heat transfer from hot reservoir</em>
QH' > QH ( solution is attached below )
<em>2) discharges greater energy by heat transfer to the cold reservoir</em>
Qc' > Qc
solution attached below