Answer: For the sum of 130
First: $90
Second: $40
Step-by-step explanation:
We write equations for each part of this situation.
<u>The Total Charge</u>
Together they charged 1550. This means 1550 is made up of the first mechanics rate for 15 hours and the second's rate for 5 hours. Lets call the first's rate a, so he charges 15a. The second's let's call b. He charges 5b. We add them together 15a+5b=1550.
<u>The Sum of the Rates</u>
Since the first's rate is a and the second is b, we can write a+b=130 since their sum is 130.
We solve for a and b by substituting one equation into another. Solve for the variable. Then substitute the value into the equation to find the other variable.
For a+b=130, rearrange to b=130-a and substitute into 15a+5b=1550.
15a + 5 (130-a)=1550
15a+650-5a=1550
10a+650-650=1550-650
10a=900
a=$90 was charged by the first mechanic.
We substitute to find the second mechanic's rate.
90+b=130
90-90+b=130-90
b= $40 was charged by the second mechanic
She has $18.50 so she needs $39.50.
6.50×3= 19.50
18.50+19.50= 38
5.25×4=21
38+21=59
Maya would have enough money to go on the trip.
Answer:
3/8
Step-by-step explanation:
3/8 of 16 is 6
1/4 of 16 is 4
6+4 = 10
16-10 = 6
3/8 of 16 = 6
101 is the correct answer for 75+26
Answer:
Yes, The pole will fit through the door because the diagonal width of the door is 10.8 feet, which is longer than the length of the pole.
Step-by-step explanation:
Using the Pythagorean Theorem, (
) we can measure the hypotenuse of a right triangle. Since the doorway is a rectangle, and a rectangle cut diagonally is a right triangle, we can use Pythagorean Theorem to measure the diagonal width of the doorway.
Plug in the values of the length and width of the door for a and b. The c value will represent the diagonal width of the doorway:



Since 117 is equal to the value of c multiplied by c, we must find the square root of 117 to find the value of c.


Yes, The pole will fit through the door because the diagonal width of the door is 10.8 feet, which is longer than the length of the pole, measuring 10 feet.