1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TEA [102]
3 years ago
13

What does a worm and wheel mechanism do to torque and speed​

Physics
1 answer:
sergejj [24]3 years ago
6 0

Answer:Explanation:

Image result for what does a worm and wheel mechanism do to torque and speed​

Like other gear arrangements, a worm drive can reduce rotational speed or transmit higher torque. ... Each full 360 degree turn of a single start worm advances the gear by one tooth. For a multi start worm the gear reduction equals the number of teeth on the gear divided by the number of starts on the worm.

You might be interested in
As we increase the frequency of this light, but do not vary anything else (there may be more than one correct answer),
solong [7]
The answer is c hope this helps
7 0
3 years ago
A war wolf is a device used during the middle ages to assault fortifications with large rocks. A simple trebuchet is constructed
Katarina [22]

Answer:v=41.23 m/s

Explanation:

Given

mass of heavy object m_1=52 kg

distance of m_1 from the axle r_1=14 cm

mass of rock m_2=123 gm

Length of rod =4.1 m

distance of m_2 from axle r_2=4.1-0.14=3.96 m

Net torque acting is

T_{net}=m_1gr_1-m_2gr_2

T_{net}=52\times 0.14\times g-0.123\times 3.96\times g

T_{net}=6.793\times 9.8

T_{net}=66.57 N-m

Work done by T_{net} is converted to rock kinetic Energy

thus

T_{net}\times \theta =\frac{mv^2}{2}

Where \theta =angle\ turned =\frac{\pi }{2}

v= velocity\ at\ launch

66.57\times \frac{\pi }{2}=\frac{0.123\times v^2}{2}

v^2=66.57\times \pi

v=\sqrt{1700.511}

v=41.23 m/s

3 0
3 years ago
During intercourse, Lydia constantly worries whether her partner thinks she is
Misha Larkins [42]
Answer is c spectatoring
6 0
3 years ago
A solenoid of length 0.35 m and diameter 0.040 m carries a current of 5.0 A through its windings. If the magnetic field in the c
puteri [66]

Correct question:

A solenoid of length 0.35 m and diameter 0.040 m carries a current of 5.0 A through its windings. If the magnetic field in the center of the solenoid is 2.8 x 10⁻² T, what is the number of turns per meter for this solenoid?

Answer:

the number of turns per meter for the solenoid is 4.5 x 10³ turns/m.

Explanation:

Given;

length of solenoid, L= 0.35 m

diameter of the solenoid, d = 0.04 m

current through the solenoid, I = 5.0 A

magnetic field in the center of the solenoid, 2.8 x 10⁻² T

The number of turns per meter for the solenoid is calculated as follows;

B =\mu_o  I(\frac{N}{L} )\\\\B =  \mu_o  I(n)\\\\n = \frac{B}{\mu_o I} \\\\n = \frac{2.8 \times 10^{-2}}{4 \pi \times 10^{-7} \times 5.0} \\\\n = 4.5 \times 10^3 \ turns/m

Therefore, the number of turns per meter for the solenoid is 4.5 x 10³ turns/m.

3 0
3 years ago
Unpolarized light passes through two polarizers whose transmission axes are at an angle # with respect to each other. What shoul
Yuki888 [10]

Answer:

63.4^{\circ}

Explanation:

When unpolarized light passes through the first polarizer, the intensity of the light is reduced by a factor 1/2, so

I_1 = \frac{1}{2}I_0 (1)

where I_0 is the intensity of the initial unpolarized light, while I_1 is the intensity of the polarized light coming out from the first filter. Light that comes out from the first polarizer is also polarized, in the same direction as the axis of the first polarizer.

When the (now polarized) light hits the second polarizer, whose axis of polarization is rotated by an angle \theta with respect to the first one, the intensity of the light coming out is

I_2 = I_1 cos^2 \theta (2)

If we combine (1) and (2) together,

I_2 = \frac{1}{2}I_0 cos^2 \theta (3)

We want the final intensity to be 1/10 the initial intensity, so

I_2 = \frac{1}{10}I_0

So we can rewrite (3) as

\frac{1}{10}I_0 =  \frac{1}{2}I_0 cos^2 \theta

From which we find

cos^2 \theta = \frac{1}{5}

cos \theta = \frac{1}{\sqrt{5}}

\theta=cos^{-1}(\frac{1}{\sqrt{5}})=63.4^{\circ}

6 0
3 years ago
Other questions:
  • Very short pulses of high-intensity laser beams are used to repair detached portions of the retina of the eye. The brief pulses
    12·1 answer
  • What force is necessary to accelerate a 70-kg object at a rate of 4.2 m/s2 ? Show your wo k below?
    6·1 answer
  • If Earth were twice as far from the sun, the force of gravity attracting the Earth to the Sun would be
    14·1 answer
  • The pressure at a point on a sloping surface within a tank filled with liquid depends on the
    8·1 answer
  • Which statement describes a scientific theory?
    8·2 answers
  • How wide is the moon
    5·2 answers
  • A disk drive plugged into a 120V outlet operates on a voltage of 12V . The transformer that powers the disk drive has 125 turns
    11·1 answer
  • The water-balloon weighs 4.9 N. gravitational field strength = 9.8 N/kg Calculate the mass of the water-balloon
    10·1 answer
  • Question1 of 10
    10·2 answers
  • How did Niels Bohr create the Atomic theory
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!