Answer:
2 N
Explanation:
From the question, it's given that
Mass m = 0.2 kg
Acceleration a = 10 m/s^2
The force a soccer goalie experience when stopping a ball will be equal to the force at which the ball is being kicked. This is
F = ma
Substitute all the parameters into the formula
F = 0.2 × 10
F = 2 Newton.
Answer: The answer is B
Explanation: A correlation generally is a mutual relationship/connection or the process of establishing the relationship/connection between 2+ things
Answer:
(a)0.531m/s
(b)0.00169
Explanation:
We are given that
Mass of bullet, m=4.67 g=
1 kg =1000 g
Speed of bullet, v=357m/s
Mass of block 1,
Mass of block 2,
Velocity of block 1,
(a)
Let velocity of the second block after the bullet imbeds itself=v2
Using conservation of momentum
Initial momentum=Final momentum







Hence, the velocity of the second block after the bullet imbeds itself=0.531m/s
(b)Initial kinetic energy before collision



Final kinetic energy after collision



Now, he ratio of the total kinetic energy after the collision to that before the collision
=
=0.00169
Answer:
f = 485.62 N
Explanation:
Since, the bag is moving with some acceleration. Hence, the unbalanced force will be given as:
Unbalanced Force = Horizontal Component Applied Force - Frictional Force
Unbalanced Force = Fx - f
But, from Newtons Second Law of Motion:
Unbalanced Force = ma
comparing the equations:
ma = Fx - f
f = F Cos θ - ma
where,
f = frictional force = ?
F = Applied force = 593 N
m = mass of person = 49 kg
a = acceleration = 0.57 m/s²
θ = Angle with horizontal = 30°
Therefore,
f = (593 N)(Cos 30°) - (49 kg)(0.57 m/s²)
f = 513.55 N - 27.93 N
<u>f = 485.62 N</u>
Planet A is heavier than Planet B
Because Planet A is heavier than Planet B, Planet B will be easier to be moved by gravity causing it to move faster than Planet A.
Hope This Helped : )