Answer:
v = 315 m/s
Explanation:
given,
length of the string = 64.3 cm
frequency at fundamental mode = 245 Hz
speed of sound = 345 m/s
speed of the transverse waves = ?
here
wavelength = twice length of string
λ = 2 L
λ = 2 × 64.3
λ = 128.6 cm = 1.286 m
using formula
v = ν λ
v = 245 × 1.286
v = 315.07 m/s
Hence, the speed of the transverse wave on the string will be equal to v = 315 m/s
Answer:
A
Explanation:
Think about rubbing your hands together- the friciton produces heat
The control group is the independent variable and the experimental group is the dependent due to change during the experiment. The experimental group will usually rely on another variable in the experiment for change.
Answer:
maybe alternator..generator..
Answer:
Frequency of the light will be equal to 
Explanation:
We have given wavelength of the light 
Velocity of light is equal to 
We have to find the frequency of light
We know that velocity is equal to
, here
is wavelength and f is frequency of light
So frequency of light will be equal to 
So frequency of the light will be equal to 