Answer:
212.5 mL
both the original and the diluted solution have 0.765 moles of KCl
Explanation:
c1V1 = c2V2
V2 = c1V1/c2 = (1.8 M×425 mL)/1.2 M = 637.5 mL
(637.5 - 425) mL = 212.5 mL
n = (1.8 mol/L)(0.425 L) = 0.765 moles of KCl
since it's a dilution, the diluted solution has the same number of moles as the original solution, 0.765 moles of KCl
The oxidation number of elements in equation below are,
4NH₃ + 3Ca(ClO)₂ → 2N₂ + 6H₂O + 3CaCl₂
O.N of N in NH₃ = -3
O.N of Ca in Ca(ClO)₂ and CaCl₂ = +2
O.N of N in N₂ = 0
O.N of Cl in Ca(ClO)₂ = +1
O.N of Cl in CaCl₂ = -1
Oxidation:
Oxidation number of Nitrogen is increasing from -3 (NH₃) to 0 (N₂).
Reduction:
Oxidation number of Cl is decreasing from +1 [Ca(ClO)₂] to -1 (CaCl₂).
Result:
<span>N is oxidized and Cl is reduced.</span>
Answer:
They all need to use each other to function?
Explanation:
Natural selection are positive traits, mutation is radioactive, and adaption is when natural selection works.
Answer:
4 moles of Na are needed.
Ernest Rutherford was a famous British physicist who lived and worked in the 19th and the first half of the 20th century. He is now considered to be the father of nuclear physics, given that he was the one responsible for figuring out about the nuclear structure of an atom (proton, electron, neutron) and about the nuclear processes in general. The element rutherfordium (Rf) is named after this scientist. When it comes to his personal life, his parents are both British, however, Ernest was born in New Zealand because his mom and dad before he was born. He worked as a professor in several universities, and was even knighted in 1914. He is a Nobel prize winner, which he won for Chemistry in 1908.