<u>Answer:</u> The value of
for the reaction at 690 K is 0.05
<u>Explanation:</u>
We are given:
Initial pressure of
= 1.0 atm
Total pressure at equilibrium = 1.2 atm
The chemical equation for the decomposition of phosgene follows:

Initial: 1 - -
At eqllm: 1-x x x
We are given:
Total pressure at equilibrium = [(1 - x) + x+ x]
So, the equation becomes:
![[(1 - x) + x+ x]=1.2\\\\x=0.2atm](https://tex.z-dn.net/?f=%5B%281%20-%20x%29%20%2B%20x%2B%20x%5D%3D1.2%5C%5C%5C%5Cx%3D0.2atm)
The expression for
for above equation follows:


Putting values in above equation, we get:

Hence, the value of
for the reaction at 690 K is 0.05
The answer would be B. One region of the molecule has a small negative charge while another region has a small positive charge. However usually in polar bonds, charges or bond between the atoms are unequal (as opposed to having small equal charges).
I’m pretty sure the answer is Barium. I hope it helps.
Answer:
The choice that we had decided on doing today factors our future because whatever choice we decide on doing in the present day can impact how our life will play out in the future. ... After all, it is your life, so whatever you chose to do, you have the power to decide and create what you think would be best for you
Explanation:
Answer:
77,007 Pa
Explanation:
Hello!
In this case, since the equivalence statement for atmospheres and pascals is:
1 atm = 101,325 Pa
We can set up the following conversion factor to obtain the pressure in pascals:

Best regards!