Find the mass of C in the 2.657 g CO2:
(2.657 g CO2) / (44.01 g/mol) = 0.06037 mol CO2
Since each mole of CO2 also has 1 mole of C, this is equivalent to 0.06037 mol C.
Find the mass of H in the 1.089 g H2O:
(1.089 g H2O) / (18.02 g/mol) = 0.06043 mol H2O
Since 1 mol H2O has 2 mol H, this is equivalent to (0.06043)*2 = 0.1209 mol H.
Taking the ratio of H to C: 0.1209 / 0.06037 = 2.002 ~ 2
Therefore, the empirical formula of isobutylene is CH2.
Answer:
I don't know if you can directly prove it with evidence if you haven't observed it but you can maybe take an educated guess by the aftermath of it?
For example, you see a burnt log. At this time, people don't know what fire is. After we study the log, we could see that it takes extreme temperature in order to burn the log and that would help people see that there is a force like fire that can cause this. In a way, finding out that extreme temperatures burns stuff is another step closer to the discovery and proof of fire
I hope that makes sense
Answer:
Where Blocal = local magnetic field between the two regions of the molecule
Blocal = (1-σ)B0
ΔBlocal = (1-σ1)B0 - (1-σ2)B0 = (σ2 - σ1)B0 = ΔσB0 ≈ ΔδB0 x 10∧-6
= (3.36-1.16) x 10∧-6 x B0 = 2.20 x 10∧-6B0
(a) ΔBlocal = 2.20 x 10∧-6 x 1.9T = 4.2 μT
(b) ΔBlocal = 2.20 x 10∧-6 x 16.5T = 36.3 μT
Explanation:
the mass percent of sugar in this solution is 46%.
Answer:
Solution given:
mass of solute=34.5g
mass of solvent=75g
mass percent=
=
<h3>
Answer:</h3>
0.0157 g Au
<h3>
General Formulas and Concepts:</h3>
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.113 g Au
<u>Step 2: Identify Conversions</u>
Molar Mass of Au - 197.87 g/mol
<u>Step 3: Convert</u>
<u /> = 0.015733 g Au
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
0.015733 g Au ≈ 0.0157 g Au