Answer:
The velocity of the frozen rock at
is -14.711 meters per second.
Explanation:
The frozen rock experiments a free fall, which is a type of uniform accelerated motion due to gravity and air viscosity and earth's rotation effect are neglected. In this case, we need to find the final velocity (
), measured in meters per second, of the frozen rock at given instant and whose kinematic formula is:
(Eq. 1)
Where:
- Initial velocity, measured in meters per second.
- Gravity acceleration, measured in meters per square second.
- Time, measured in seconds.
If we get that
,
and
, then final velocity is:


The velocity of the frozen rock at
is -14.711 meters per second.
<span>The velocity would be 54.2 m/s
We would use the equation 1/2mv^2top+mghtop = 1/2mv^2bottom+mghbottom where m is the mass of the bobsled(which can be ignored), vtop/bottom is the velocity of the bobsled at the top or bottom, g is gravity, and htop/bottom is the height of the bobsled at the top or bottom of the hill. Since the velocity of the bobsled at the top of the hill and height at the bottom of the hill are zero, 1/2mv^2top and mghbottom will equal zero. The equation will be mghtop=1/2mv^2bottom. Thus we would solve for v.</span>
Answer:
Is always towards the center of the Earth
Explanation:
As a satellite moves around the Earth in a circular orbit, the direction of the force of gravity is always towards the center of the Earth. At an altitude of 100 km, you would be so high that you would see black sky and stars if you looked upwards.
Answer:
A change in size, shape, or matter.
Explanation:
A physical change does not produce new substances. A physical change may only change the physical properties of a substance. a change in size, shape, or phase of matter.