In Longitudinal waves, particles of the medium vibrate around their mean positions. Their amplitude of vibration is in the direction of the propagation of the wave. In transverse wave of longitudinal wave, <em>the wavelength is always the distance between two particles which are in the same phase.</em>
If we take pressure waves, (sound waves), we have pressure variations created by sound wave along its path. Pressure is maximum at compression regions and pressure is minimum at rarefaction region. In between the two, pressure of air remains as the pressure when there is no wave.
<em>The wave length is then the distance between two consecutive rarefactions or two consecutive compression regions.</em>
<em>It is also the distance traveled by the wave in one time period.</em> Time period is the time the particles in the medium take to vibrate towards the end, turn back to reach the other end of their oscillation and then reach back their position.
Answer:
(a)
(b) I =428 
(c)
Explanation:
GIVEN
mass = 18.2 kg
radial arm length = 3.81 m
velocity = 49.8 m/s
mass of arm = 22.6 kg
we know using relation between linear velocity and angular velocity


for angular acceleration, use the following equation.

since 
here for one circle is 2 π radians. therefore for one quarter of a circle is π/2 radians
so for one quarter 

on solving

(b)
For the catapult,
moment of inertia


For the ball,



so total moment of inertia = 428 
(c)


Answer:
Yes
Explanation:
sun rays towards the earth is an example of velocity
The answer is net force b