Answer:
≈19.144°C.
Explanation:
all the details are in the attachment.
Note, that c₁, m₁, t₁ are the parameters of the sample of brass; c₂, m₂ and t₂ are the parameters of the sample of water.
P.S. change the provided design according Your requirements.
Answer:
R = 1.2295 10⁵ m
Explanation:
After reading your problem they give us the diameter of the lens d = 4.50 cm = 0.0450 m, therefore if we use the Rayleigh criterion for the resolution in the diffraction phenomenon, we have that the minimum separation occurs in the first minimum of diffraction of one of the bodies m = 1 coincides with the central maximum of the other body
θ = 1.22 λ / D
where the constant 1.22 leaves the resolution in polar coordinates and D is the lens aperture
how angles are measured in radians
θ = y / R
where y is the separation of the two bodies (bulbs) y = 2 m and R the distance from the bulbs to the lens
R =
let's calculate
R =
R = 1.2295 10⁵ m
She does 200J .
We know she uses 20N of force and 10m is the distance. We multiply both numbers and we are given our answer of 200J. Hope this was helpful. :)
Answer:
3: I can´t see the text/image, but it depend on the mass and the force applied to the ball, if both are too high, it will be harder to make a home run. (Second law)
4:It would be easier to make a home run because there is no interruption between the ball and the space the same travels. (Third law)
Explanation:
Answer:
b and d
a, c, e, and f
Explanation:
Ideal gas law:
PV = nRT
Solving for temperature:
T = PV / (nR)
Therefore, temperature is directly proportional to pressure and volume, and inversely proportional to the number of molecules.
T = k PV / N
Let's say that T₀ is the temperature when P = 100 kPa, V = 4 L, and N = 6×10²³.
a) T = k PV / N = T₀
b) T = k (2P) V / N = 2T₀
c) T = k (P/2) (2V) / N = T₀
d) T = k PV / (N/2) = 2T₀
e) T = k P (V/2) / (N/2) = T₀
f) T = k (P/2) V / (N/2) = T₀
b and d have the highest temperature,
a, c, e, and f have the lowest temperature.