lf a heavy point mass is suspended by a weightless, inextensible and perfectly flexible string from a rigid support, then this arrangement is called simple pendulum.
In practice, however, these requirements cannot be fulfilled. So we use a practical pendulum.
A practical pendulum consists of a small metallic solid sphere suspended by a fine silk thread from a rigid support. This is the practical simple pendulum which is nearest to the ideal simple pendulum.
Note :
The metallic sphere is called the bob.
When the bob is displaced slightly to one side from its mean position and released, it oscillates about its mean position in a vertical plane.
1st derivative gives velocity;
d r(t)/ dt = 2t i + 6 j + 4/t k
2nd derivative gives acceleration;
d^2 r(t)/ dt^2 = 2 i - 4/ t^2
Speed ;
Square root of (4 t^2 + 36 + 16/ t^2)
For a given time, like 2 seconds, t will be 2. And answer of speed will be scalar.
Answer:
B
Explanation:
From Newton's law of motion, we have:
V^2 = U^2 + 2gH
Where V and U are final and initial velocity respectively.
H is the height.
For the object to have a sustain a maximum height it means the final velocity of the object is zero.
By computing the height of the object sustain by A, we have:
0^2 = 2^2 -2×10×H
0= 4 -20H
4 = 20H;
H= 0.2m
For object B we have;
0^2 = 1^2 -2×10×H
0 = 1 -20H
H = 1/20= 0.05m
From computing the height sustain by both objects, we see object B is projected at a shorter height into atmosphere than A.
Hence object B will return to the ground first.