You can write the equation in 3 different ways, depending on which quantity you want to be the dependent variable. Any one of the three forms can be derived from either of the other two with a simple algebra operation. They're all the same relationship, described by "Ohm's Law".
==> Current = (potential difference) / (resistance)
==> Potential difference = (current) x (resistance)
==> Resistance = (potential difference) / (resistance)
that statement is true
a Third class lever applied when the effort place between the load and the fulcrum.
For example, in a forearm serve
Fulcrum : The elbow
Effort : The effort that putted by the biceps muscle
Load : The arm
Answer
given,
Tension of string is F
velocity is increased and the radius is not changed.
the string makes two complete revolutions every second
consider the centrifugal force acting on the stone
=
now centrifugal force is balanced by tension
T =
From the above expression we can clearly see that tension is directly proportional to velocity and inversely proportional to radius.
When radius is not changing velocity is increasing means tension will also increase in the string.
Answer:
13.4 x 10 raise to power -19 C
Explanation:
. The distance moved by a charge in the direction of a uniform electric field is d= 1.8 cm =0.018 m
. The uniform electric field is E = 214 N/M
, The decrease in electrical potential energy is
d(P.E) = 51.63 x 10 raise to power -19 J
Let the magnitude of the charge of the moving particle be q
which is given by the equation
d(P.E) =qEd
51.63 x 10 power -19 = q(214)(0.018)
51.63 x 10 power -19 =3.852q
by making q the formular,
q = 13.4 x 10 power -19 C