Compared with an Earth year, a galactic year represents time on a grand scale but its not a consistent measurement across the galaxy
Answer:
Solution given:
height [H]=25m
initial velocity [u]=8.25m/s
g=9.8m/s
now;
a. How long is the ball in flight before striking the ground?
Time of flight =?
Now
Time of flight=
substituting value
- =

- =2.26seconds
<h3>
<u>the ball is in flight before striking the ground for 2.26seconds</u>.</h3>
b. How far from the building does the ball strike the ground?
<u>H</u><u>o</u><u>r</u><u>i</u><u>z</u><u>o</u><u>n</u><u>t</u><u>a</u><u>l</u><u> </u>range=?
we have
Horizontal range=u*
<h3>
<u>The ball strikes 18.63m far from building</u>. </h3>
Answer:
the height reached is = 0.458 [m]
Explanation:
We need to make a sketch of the ball and see the location of the reference point where the potential energy is zero. But the kinetic energy will be defined by the following expression:
![Ek=\frac{1}{2} *m*v^{2} \\where:Ek= kinetic energy [J]\\m = mass of the ball [kg]\\v = velocity of the ball [m/s]](https://tex.z-dn.net/?f=Ek%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%5C%5Cwhere%3AEk%3D%20kinetic%20energy%20%5BJ%5D%5C%5Cm%20%3D%20mass%20of%20the%20ball%20%5Bkg%5D%5C%5Cv%20%3D%20velocity%20of%20the%20ball%20%5Bm%2Fs%5D)
Replacing the values on the equation we have:
![Ek=\frac{1}{2}*(2)*(3^{2} )\\ Ek=9[J]\\](https://tex.z-dn.net/?f=Ek%3D%5Cfrac%7B1%7D%7B2%7D%2A%282%29%2A%283%5E%7B2%7D%20%29%5C%5C%20Ek%3D9%5BJ%5D%5C%5C)
This kinetic energy will be transformed in potential energy in the moment when the ball starts to rolling up. Therefore the maximum height reached by the ball depends of the initial velocity given to the ball.
![Ek=Ep\\where\\Ep=potential energy [J]\\Ep=m*g*h\\where\\g=gravity = 9.81[m/s^2]\\h=height reached [m]\\](https://tex.z-dn.net/?f=Ek%3DEp%5C%5Cwhere%5C%5CEp%3Dpotential%20energy%20%5BJ%5D%5C%5CEp%3Dm%2Ag%2Ah%5C%5Cwhere%5C%5Cg%3Dgravity%20%3D%209.81%5Bm%2Fs%5E2%5D%5C%5Ch%3Dheight%20reached%20%5Bm%5D%5C%5C)
Now we have:
![h=\frac{Ep}{m*g} \\h=\frac{9}{2*9.81} \\\\h=0.45 [m]](https://tex.z-dn.net/?f=h%3D%5Cfrac%7BEp%7D%7Bm%2Ag%7D%20%5C%5Ch%3D%5Cfrac%7B9%7D%7B2%2A9.81%7D%20%5C%5C%5C%5Ch%3D0.45%20%5Bm%5D)
In that moment when the ball reach the 0.45 [m] the potencial energy will be maximum and equal to the kinetic energy when the ball has a velocity of 3[m/s]
Answer:0,002 = 2 x 10⁻³
Explanation:
0,002 = 2 / 1000 = 2 / 10³ = 2 x 10⁻³