The main class of high-temperature superconductors are in the class of copper oxides (only some particular copper oxides) especially the Rare-earth barium copper oxides (REBCOs) such as Yttrium barium copper oxide (YBCO).
<h3>What superconducting material works with the highest temperature?</h3>
As of 2020, the material with the highest accepted superconducting temperature is an extremely pressurized carbonaceous sulfur hydride with a critical transition temperature of +15°C at 267 GPa.
<h3>How do high-temperature superconductors work?</h3>
High-temperature superconductivity, the ability of certain materials to conduct electricity with zero electrical resistance at temperatures above the boiling point of liquid nitrogen, was unexpectedly discovered in copper oxide (cuprate) materials in 1987.
Learn more about high temperature superconductors here:
<h3>
brainly.com/question/1657823</h3><h3 /><h3>#SPJ4</h3>
IT IS D FOCAL POINT
P.S. im in middle school not trying to brag
Answer:
Iodine (I)
Explanation:
The atomic mass of Arsenic (As) is 74.92 amu. Also, we know that Halogen Group consists of following elements.
Fluorine, Chlorine, Bromine, Iodine, Astatine and Tennessine
And in given four options only Chlorine and Iodine belongs to halogen family. And we know that the atomic mass of chlorine is 35.45 amu which is less than that of Arsenic, therefore Iodine with atomic mass of 126.90 amu is the correct answer.
Avagadro's number is just a measurement. One mole is 6.022 X 10^23 of anything - atoms, molecules, marbles... anything.
<span>1) If one mole = 6.022 X 10^23, then 8.00mol of H2S is: </span>
<span>(3.00mol H2S) (6.022 X 10^23 molecules H2S / 1 mol H2S) = 1.8060 X 10^24 molecules H2S. </span>
<span>Rounded to 3 sig figs =1.81 X 10^24 molecules H2S
</span>part2.
<span> This one uses moles in the stoichiometric sense as well as the measurement. One formula unit of MgCl2 contains 1 mole Mg and 2 moles Cl. </span>
<span>First, figure out how many moles of formula units there are. </span>
(1.81 X 10^24 FU's) (1mol MgCl2 / 6.022 X 10^23 FU's) = 3.0056mol MgCl2.
<span>Now, we know that there are 2 moles of Cl in every mole of MgCl2 (2 Cl atoms in every unit of MgCl2). From this we can determine how many moles of Cl atoms there are: </span>
<span>(3.0056mol MgCl2) (2mol Cl atoms / 1mol MgCl2) = 6.0112mol Cl atoms. </span>
<span>Now round to 3 sig figs = 10.0mol Cl atoms</span>
I think this is the answer you was looking for hope this helps !!!