Answer:
b. Discharging; anode; cathode
Explanation:
When discharging , it means the battery is producing a flow electric current, the lithium ions are released from the anode to the cathode which generates the flow of electrons from one side to another. When charging Lithium ions are released by the cathode and received by the anode.
Answer:
, 
Explanation:
Since there is no information related to volume flow to and from turbine, let is assume that volume flow at inlet equals to
. Turbine is a steady-flow system modelled by using Principle of Mass Conservation and First Law of Thermodynamics:
Principle of Mass Conservation

First Law of Thermodynamics

This 2 x 2 System can be reduced into one equation as follows:

The water goes to the turbine as Superheated steam and goes out as saturated vapor or a liquid-vapor mix. Specific volume and specific enthalpy at inflow are required to determine specific enthalpy at outflow and mass flow rate, respectively. Property tables are a practical form to get information:
Inflow (Superheated Steam)

The mass flow rate can be calculated by using this expression:


Afterwards, the specific enthalpy at outflow is determined by isolating it from energy balance:


The enthalpy rate at outflow is:


Answer:
∆S1 = 0.5166kJ/K
∆S2 = 0.51826kJ/K
Explanation:
Check attachment for solution
Answer:fall arrest harness
Explanation:cuz it’s just right
Known :
D = 12 in = 1 ft
L = 850 ft
Q = 5.6 cfs
hA = 750 ft
hB = 765 ft
PA = 85 psi = 12240 lb/ft²
Solution :
A = πD² / 4 = π(1²) / 4
A = 0.785 ft²
<u>Velocity of water :</u>
U = Q / A = 5.6 / 0.785
U = 7.134 ft/s
<u>Friction loss due to pipe length :</u>
Re = UD / v = (7.134)(1) / (0.511 × 10^(-5))
Re = 1.4 × 10⁶
(From Moody Chart, We Get f = 0.015)
hf = f(L / d)(U² / 2g) = 0.015(850 / 1)((7.134²) / 2(32.2))
hf = 10 ft
PA + γhA = PB + γhB + γhf
PB = PA + γ(hA - hB - hf)
PB = 12240 + (62.4)(750 - 765 - 10)
PB = 10680 lb/ft²
PB = 74.167 psi