The final temperature : 345 K
<h3>
Further explanation
</h3>
Given
475 cm³ initial volume
600 cm³ final volume
Required
The final temperature
Solution
At standard temperature and pressure , T = 273 K and 1 atm
Charles's Law :
When the gas pressure is kept constant, the gas volume is proportional to the temperature
V₁/T₁=V₂/T₂
Input the value :
T₂=(V₂T₁)/V₁
T₂=(600 x 273)/475
T₂=345 K
For example, the atomic mass of an oxygen atom is 16.00 amu; that means the molar mass of an oxygen atom is 16.00 g/mol. Further, if you have 16.00 grams of oxygen atoms, you know from the definition of a mole that your sample contains 6.022 x 10^23 oxygen atoms.
Answer:
The area around the nucleus must be of low mass.
Explanation:
Rutherford`s experiment showed that there are some positive charges in the center of the atoms, and because they are all together, they will give a great mass to the atom.
It was quite different from Thomson`s experiment, in which it was thought that the negative charges were mixed with the positive charges, around the atom (like a Pudding Model). In Rutherford`s experiment, because the direction of beta particles, it was the prediction of the positive nucleus.
Hope this info is useful.
Answer: Vibråtory movement.
Explanation: when particles bounce against each other the friction creates thermal energy. Think about what happens when you rub your hands together and they get warmer, that the friction between your hands making thermal energy.