The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
The equation for aqueous solution of H₂CO₃ is
H₂CO₃ → H₂O + CO₂
The charge balance equation is
[HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Thus from the above conclusion we can say that The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Learn more about the Balanced Chemical equation here: brainly.com/question/26694427
#SPJ4
Polarity is classified by the difference in two or more atoms that is the electronegativity value (EN)
En for Fluorine =4.0, Bromine=2.96 Chlorine =3.16 Hydrogen=2.1
for the molecules
HF=4.0-2.I=1.9
HCl=3.16-2.1=1.06
Hbr=2.96-2.1=0.86
Hi=2.66-2.1=0.56
H2=2.1-2.1=0
from the EN value above HF has the mast highest value of EN hence it is the most polar.
Answer:
B - What we change
Explanation:
Dependent Variable - What we measure
Control Variable - what stays the same
Conclusion - what we conclude
<em>Hope</em><em> </em><em>this</em><em> </em><em>can</em><em> </em><em>Help</em><em>!</em>
<em>:</em><em>D</em>
Answer:
There are 1.8021 ⋅ 1024 molecules of CH4 in 48 grams of CH4. To answer this question, you must understand how to convert grams of a molecule into the number of molecules. To do this, you have to utilize the concepts of moles and molar mass. A mole is just a unit of measurement. Avogadro's number is equal to 6.022 ⋅1023 molecules/mole. i think please dont complain to me if its wrong im sorry
Explanation: