We are given that the concentration of NaOH is 0.0003 M and are asked to calculate the pH
We know that NaOH dissociates by the following reaction:
NaOH → Na⁺ + OH⁻
Which means that one mole of NaOH produces one mole of OH⁻ ion, which is what we care about since the pH is affected only by the concentration of H⁺ and OH⁻ ions
Now that we know that one mole of NaOH produces one mole of OH⁻, 0.0003M NaOH will produce 0.0003M OH⁻
Concentration of OH⁻ (also written as [OH⁻]) = 3 * 10⁻⁴
<u>pOH of the solution:</u>
pOH = -log[OH⁻] = -log(3 * 10⁻⁴)
pOH = -0.477 + 4
pOH = 3.523
<u>pH of the solution:</u>
We know that the sum of pH and pOH of a solution is 14
pH + pOH = 14
pH + 3.523 = 14 [subtracting 3.523 from both sides]
pH = 10.477
Answer:
Ka = ( [H₃O⁺] . [F⁻] ) / [HF]
Explanation:
HF is a weak acid which in water, keeps this equilibrium
HF (aq) + H₂O (l) ⇄ H₃O⁺ (aq) + F⁻ (aq) Ka
2H₂O (l) ⇄ H₃O⁺ (l) + OH⁻ (aq) Kw
HF is the weak acid
F⁻ is the conjugate stron base
Let's make the expression for K
K = ( [H₃O⁺] . [F⁻] ) / [HF] . [H₂O]
K . [H₂O] = ( [H₃O⁺] . [F⁻] ) / [HF]
K . [H₂O] = Ka
Ka, the acid dissociation constant, includes Kwater.
Answer:
A. Plants
Explanation:
Plants are producers, which make their own food. Other organisms, such as rodents, birds, and wild cats, are consumers, which receive their energy from plants or other consumers.
Answer:
the boiling of 10g of liquid water
####3 ##################### 2AS###################