To solve this problem it is necessary to apply the concepts related to the electric field according to the definition of Coulomb's law.
The electric field is defined mathematically as a vector field that associates to each point in space the (electrostatic or Coulomb) force per unit of charge exerted on an infinitesimal positive test charge at rest at that point.
Mathematically this can be described as:

Where,
permittivity of free space
r = Distance
q = Charge
E = Electric Field
Our values are given as,



Replacing we have,




Therefore the amoun of charge on the outer surface of the larger shell is 
Answer:
Speed is the time rate at which an object is moving along a path, while velocity is the rate and direction of an object's movement. Put another way, speed is a scalar value, while velocity is a vector. ... In its simplest form, average velocity is calculated by dividing change in position (Δr) by change in time (Δt).
Explanation:
Answer: 1/R = 1/r1 + 1/r2 + 1/r3
Explanation:
Just did the test myself. Hope this helps!
To solve this problem it is necessary to apply the concepts related to acceleration due to gravity, as well as Newton's second law that describes the weight based on its mass and the acceleration of the celestial body on which it depends.
In other words the acceleration can be described as

Where
G = Gravitational Universal Constant
M = Mass of Earth
r = Radius of Earth
This equation can be differentiated with respect to the radius of change, that is


At the same time since Newton's second law we know that:

Where,
m = mass
a =Acceleration
From the previous value given for acceleration we have to

Finally to find the change in weight it is necessary to differentiate the Force with respect to the acceleration, then:




But we know that the total weight (F_W) is equivalent to 600N, and that the change during each mile in kilometers is 1.6km or 1600m therefore:


Therefore there is a weight loss of 0.3N every kilometer.
Answer:
waking up,eat,sleep
Explanation:
notice how i didn't say math :)