By compressing the spring a distance <em>x</em> (in m), you are storing 1/2 <em>k</em> <em>x</em> ² (in J) of potential energy, which is converted completely into kinetic energy 1/2 <em>m v</em> ², where
• <em>k</em> = 40 N/m = spring constant
• <em>m</em> = 10 kg = mass of the ball
• <em>v</em> = 2 m/s = ball's speed (at the moment the spring returns to its equilibrium point)
So we have
1/2 <em>k</em> <em>x</em> ² = 1/2 <em>m</em> <em>v</em> ²
<em>x</em> = √(<em>m</em>/<em>k</em> <em>v</em> ²) = √((10 kg) / (40 N/m) (2 m/s)²) = 1 m
Wavelength = (speed) / (frequency)
Wavelength = (340 m/s) / (600 /s)
Wavelength = 0.567 meter
Answer:
(a) The current in the wire is 19.89 A
(b) The distance from the wire is 0.159 cm
Explanation:
Given;
magnetic field, B = 2.5 mT
diameter of the wire, d = 1 cm
radius of the wire, r = 0.5 cm = 0.005 m
(a) The current in the wire is calculated as;
![I = \frac{2Br}{\mu_0} \\\\I = \frac{2\times 2.5 \times 10^{-3} \times 0.005 }{4\pi \times 10^{-7} } \\\\I = 19.89 \ A](https://tex.z-dn.net/?f=I%20%3D%20%5Cfrac%7B2Br%7D%7B%5Cmu_0%7D%20%5C%5C%5C%5CI%20%3D%20%5Cfrac%7B2%5Ctimes%202.5%20%5Ctimes%2010%5E%7B-3%7D%20%5Ctimes%200.005%20%7D%7B4%5Cpi%20%5Ctimes%2010%5E%7B-7%7D%20%7D%20%5C%5C%5C%5CI%20%3D%2019.89%20%5C%20A)
(b) The distance from the wire where the magnetic field is 2.5 mT is calculated as;
![B = \frac{\mu_0 I}{2\pi d} \\\\where;\\\\d \ is \ the \ distance \ from \ the \ wire\\\\d = \frac{\mu_0 I}{2\pi B} = \frac{4 \pi \times 10^{-7} \times 19.89}{2\pi \times 2.5 \times 10^{-3}} = 0.00159 \ m = 0.159 \ cm](https://tex.z-dn.net/?f=B%20%3D%20%5Cfrac%7B%5Cmu_0%20I%7D%7B2%5Cpi%20d%7D%20%5C%5C%5C%5Cwhere%3B%5C%5C%5C%5Cd%20%5C%20is%20%5C%20the%20%5C%20distance%20%5C%20from%20%5C%20the%20%5C%20%20wire%5C%5C%5C%5Cd%20%3D%20%5Cfrac%7B%5Cmu_0%20I%7D%7B2%5Cpi%20B%7D%20%3D%20%5Cfrac%7B4%20%5Cpi%20%5Ctimes%2010%5E%7B-7%7D%20%5Ctimes%2019.89%7D%7B2%5Cpi%20%5Ctimes%202.5%20%5Ctimes%2010%5E%7B-3%7D%7D%20%20%3D%200.00159%20%5C%20m%20%3D%200.159%20%5C%20cm)
Answer:
It does attract
Explanation:
But due to the lack of gravitational pull of the earth he/she feels weightless I hope this helps you