This question is missing the part that actually asks the question. The questions that are asked are as follows:
(a) How much of a 1.00 mg sample of americium remains after 4 day? Express your answer using 2 significant figures.
(b) How much of a 1.00 mg sample of iodine remains after 4 days? Express your answer using 3 significant figures.
We can use the equation for a first order rate law to find the amount of material remaining after 4 days:
[A] = [A]₀e^(-kt)
[A]₀ = initial amount
k = rate constant
t = time
[A] = amount of material at time, t.
(a) For americium we begin with 1.00 mg of sample and must convert time to units of years, as our rate constant, k, is in units of yr⁻¹.
4 days x 1 year/365 days = 0.0110
A = (1.00)e^((-1.6x10^-3)(0.0110))
A = 1.0 mg
The decay of americium is so slow that no noticeable change occurs over 4 days.
(b) We can simply plug in the information of iodine-125 and solve for A:
A = (1.00)e^(-0.011 x 4)
A = 0.957 mg
Iodine-125 decays at a much faster rate than americium and after 4 days there will be a significant loss of mass.
Answer: D. Mutation in coding sequences are more likely to be deleterious to the organism than mutations in noncoding sequences.
Explanation: It was not likely to be that the coding sequences are replicated more often. The only possible explanation is that the mutations in coding is more likely to be deleterious to the organism than mutations because it is in a non coding sequence.
A beta emission radioactive decay can pass through the body.
In order to <span>decrease the pressure of a gas inside a closed cubical container, you need to decrease the temperature of the container. The volume of the system is rigid so it means volume is constant. By the ideal gas law, temperature and pressure are directly related. Increasing the temperature, increases the pressure and the opposite to happens.</span>