Answer:
ΔG° = 41.248 KJ/mol (298 K); the correct answer is a) 41 KJ
Explanation:
Ag+(aq) + 2NH3(aq) ↔ Ag(NH3)2+(aq)
⇒ Kf = 1.7 E7; T =298K
⇒ ΔG° = - RT Ln Kf.....for aqueous solutions
∴ R = 8.314 J/mol.K
⇒ ΔG° = - ( 8.314 J/mol.K ) * ( 278 K ) ln ( 1.7 E7 )
⇒ ΔG° = 41248.41 J/mol * ( KJ / 1000J )
⇒ ΔG° = 41.248 KJ/mol
Answer:
1. [OH⁻] = 0.30 M ; 2. [OH⁻] = 1.54x10⁻⁶M ; 3. [OH⁻] = 1.32x10⁻¹³M
Explanation:
Remember the rule:
pH + pOH = 14
pOH = 14 - pH
10*⁻pOH (you have to elevate 10, to -pOH)
10*⁻pOH = [OH⁻]
1. 14 - 13.48 = 0.52
10⁻⁰°⁵² = 0.30
2. 14 - 8.19 = 5.81
10⁻⁵°⁸¹ = 1.54x10⁻⁶
3. 14 - 2.12 = 12.88
10⁻¹²°⁸⁸ = 1.32x10⁻¹³
Answer is: at higher temperatures reaction will go to the right (forward), more products (C₂H₄ and H₂) will be produce, because this is endothermic reaction (ΔH<span> is positive, </span>energy is consumed) and according Le Chatelier's principle <span>heat is included as a reactant. </span> .
<em>From the above options, the best </em><em>Thermal insulator </em><em>will be a </em><em>Plastic cup.</em>
Option (b);
<u>Explanation</u>
Thermal insulators resist to conduct energy or reduction of heat transfer when objects come across in contact with radiation or higher heat object. To conduct energy we need metal or those materials which contain free electrons in it to move from one metal to another.
Plastic doesn't have metallic character so it will resist the heat up to some threshold. Mostly this material is used in separating two current-conducting material. There are many other examples of thermal insulator such as Rubber, fabrics, paper, wood, wool.
Answer:
The weight-average molar mass of polystyrene is 134,160 g/mol.
Explanation:
Molar mass of the monomer styrene ,
, M=104 g/mol
Given , number average molar mass of the polymer , M'= 89,440 g/mol
Degree of polymerization = n

The weight-average molar mass = 
Molar mass dispersity is ratio of weight-average molar mass to the number average molar mass of the polymer.



The weight-average molar mass of polystyrene is 134,160 g/mol.