1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sladkaya [172]
4 years ago
6

Julie drives 100 mi to Grandmother's house. On the way to Grandmother's, Julie drives half the distance at 20 mph and half the d

istance at 60 mph. On her return trip, she drives half the time at 20 mph and half the time at 60 mph. (a) What is Julie's average speed on the way to Grandmother's house?
Source https://www.physicsforums.com/threads/having-trouble-with-these-2-problems.91074/
Physics
1 answer:
Gnoma [55]4 years ago
8 0

Answer:

On the way to grandmother´s, the average speed was 30 mph. On the way back, the average speed was 40 mph.

Explanation:

The average speed is given by the variation of the position over time.

Mathematically:

ΔX / Δt = v

where:

ΔX = distance (final position - initial position)

Δt = time (final time - initial time)

v = speed

On the way to Grandmother´s, we can calculate how much time Julie drove at each speed:

ΔX / Δt = v

ΔX / v = Δt

50 mi / 20 mph = 2.5 h

In the same way, we can calculate how much time she drove at 60 mph:

50 mi / 60 mph = 0.83 h

In total, she drove a distance of 100 mi in (2.5 h + 0.83 h) 3.33 h. Then, the average speed on the way to Grandmother´s was:

<u>ΔX / Δt = v = 100 mi / 3.33 h = 30 mph</u>

In the return trip, we do not know the distance nor the time that she drove at each speed, but we know that for each part of the trip, the time is the same (Δt)  and we also know that the total distance is 100 mi and the total time is 2Δt:

v1 = ΔX1 / Δt

v2 = ΔX2 / Δt

ΔX2 + ΔX1  = 100

where

v1 = speed during the first part of the trip (20 mph)

v2 = speed during the second part of the trip (60 mph)

ΔX1 = distance driven at 20 mph

ΔX2 = distance driven at 60 mph

Δt = time

If we divide v2/v1, we will get:

v2/v1 = (ΔX2 / Δt) / (ΔX1 / Δt)

60 mph / 20 mph = ΔX2 / ΔX1

3 = ΔX2 / ΔX1

3ΔX1 = ΔX2

Then we can replace ΔX2 for 3ΔX1 in this equation:

ΔX2 + ΔX1  = 100 mi

3ΔX1 + ΔX1 = 100 mi

4ΔX1 = 100 mi

ΔX1 = 25 mi

And now, we can solve Δt from the equation of v1:

v1 = ΔX1 / Δt

Δt = ΔX1 / v1 = 25 mi / 20 mph = 1.25 h

The average speed on the return trip is then:

<u>v = 100 mi / 2Δt = 100 mi / 2.5 h = 40mph</u>

You might be interested in
What is the energy of an electromagnetic wave that has a frequency of
sukhopar [10]

Answer:

Energy, \; E = 2.6504 * 10^{-34} \; Joules

Explanation:

Given the following data;

Frequency = 4.0 x 10⁹ Hz

Planck's constant, h = 6.626 x 10-34 J·s.

To find the energy of the electromagnetic wave;

Mathematically, the energy of an electromagnetic wave is given by the formula;

E = hf

Where;

E is the energy possessed by a wave.

h represents Planck's constant.

f is the frequency of a wave.

Substituting the values into the formula, we have;

Energy, \; E = 4.0 x 10^{9} * 6.626 x 10^{-34}

Energy, \; E = 2.6504 * 10^{-34} \; Joules

8 0
3 years ago
if another car is following you what is likely the best action you can take to avoid an animal that runs out into the path of yo
Zielflug [23.3K]

Keep your lane position, and sound your horn while braking in a controlled manner. Sudden panic stops are not a good idea, as they could spook the animal, causing it to suddenly dart into the path of another vehicle.



4 0
3 years ago
Read 2 more answers
If a cart is accelerating downhill under a net force of 25 N, what additional force would cause the cart to have a constant velo
Vladimir [108]
No additional force is required because it's already going downhill
7 0
3 years ago
0/2 File Limit
slamgirl [31]

Answer:

Speed at which it will reach the ground is given as

v_f = 46.8 m/s

Total time for which it will remain in air is given as

t = 6.3 s

Explanation:

As we know that the object is projected upwards with speed

v_i = 15 m/s

g = - 9.81 m/s^2

now when it will reach the ground then we have

y = v_y t + \frac{1}{2} at^2

so we have

-100 = 15 t - \frac{1}{2}(-9.81) t^2

4.905 t^2 - 15 t - 100 = 0

so we have

t = 6.3 s

Now speed of the object when it reaches the ground is given as

v_f = v_i + at

v_f = -15 + (9.81)(6.3)

v_f = 46.8 m/s

8 0
4 years ago
A speeding car collides with an unlucky bug flying across the road. Which explains why the impact doesn’t equally damage the car
velikii [3]
The bug was a lot smaller than the car, that's for sure. The car is bigger and sturdier, while the bug is smaller and frail. The bug is so frail, that rather that putting a dent in the car, it splatters all over the car. The bug is very damaged (obviously), while the car just needs a good wash.
8 0
4 years ago
Other questions:
  • A machinist turns the power on to a grinding wheel, at rest, at time t = 0 s. The wheel accelerates uniformly for 10 s and reach
    8·2 answers
  • What are non examples of a medium?
    15·1 answer
  • A man throws a football straight into the air. As it rises, it slows down. Which
    8·1 answer
  • What is the main purpose of trying to quickly cool heated food?
    6·2 answers
  • An object of mass 4kg is moving along a horizontal plane. If the coefficient of kinetic friction is 0.2 find the friction force
    9·1 answer
  • A crane lifts a 425 kg steel beam vertically a distance of 64 m. How much work does the crane do on the beam if the beam acceler
    10·1 answer
  • Put the waves in order from highest frequency to lowest frequency
    7·2 answers
  • You connected the 5 Ω, 10 Ω, 15 Ω resistors in series with a 90 V battery. What is the current?​
    12·1 answer
  • Which statement is true about the image produced by a plane mirror?
    14·1 answer
  • Write the examples of unit​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!