I think it might be A. I’m sorry if I’m wrong
Answer:
160.75 N
Explanation:
The downward velocity has no effect on the force situation, it is only changes in velocity (plus, of course, gravity, which is always there) that require a force. At constant velocity, the bottom spring s_3 is supporting its mass m_3 to balance gravity.
As the elevator slows, though, it also ends up slowing down the spring arrangement, too. However, because the stretching takes time, it means that some damped harmonic motion will be set up in the spring chain.
When the motion has finally damped out, the net force the bottom spring s3 exerts on m3 has two components--that of gravity and of the deceleration of the elevator:
F_3net = m3 * (g + a) = 10.5×(9.81+5.5)= 10.5×15.31= 160.75 N
Answer:
This was my best estimation of the answers
Answer:
<em>a. True</em>
<em></em>
Explanation:
I'll assume the question is about magnetic latches and locks.
Magnetic door locks use an electromagnetic force to stop doors from opening, so they are ideal for security. There are two main types of electric locking devices. Locking devices can either be a fail-secure locking device that remains locked when power is lost, or a fail-safe locking device that is unlocked when de-energized. An electromagnetic lock creates a magnetic field when energized or powered up, this causes an electromagnet and armature plate to become attracted to each other strongly enough to keep a door from opening.
Answer:
0.72
Explanation:
= Time period of oscillation = 1.5 s
Angular frequency is given as

= Amplitude of oscillation = 40 cm = 0.40 m
= Coefficient of static friction = ?
= acceleration of the block
= mass of the block
Maximum acceleration of the block is given as

frictional force is given as

As per newton's second law
