A. Increase is correct because the statement said the moons gravitational "PULL"
Answer:
Newton's First Law of Motion.
Explanation:
Newton's first law of motion states that an object continues to stay in its state of rest, or of uniform motion, until acted upon by an external force.
So in the case of the golf ball here, the ball stays in its state of rest, on the tee, until the golf club hits it, i.e. , applies an external force on it.
Hence we can say that Newton's First Law of Motion is the principle which is most suitable for explaining this phenomenon.
Answer:
a =( -0.32 i ^ - 2,697 j ^) m/s²
Explanation:
This problem is an exercise of movement in two dimensions, the best way to solve it is to decompose the terms and work each axis independently.
Break down the speeds in two moments
initial
v₀ₓ = v₀ cos θ
v₀ₓ = 5.25 cos 35.5
v₀ₓ = 4.27 m / s
= v₀ sin θ
= 5.25 sin35.5
= 3.05 m / s
Final
vₓ = 6.03 cos (-56.7)
vₓ = 3.31 m / s
= v₀ sin θ
= 6.03 sin (-56.7)
= -5.04 m / s
Having the speeds and the time, we can use the definition of average acceleration that is the change of speed in the time order
a = ( - v₀) /t
aₓ = (3.31 -4.27)/3
aₓ = -0.32 m/s²
= (-5.04-3.05)/3
= -2.697 m/s²
In general,
Power = (energy moved) / (time to move the energy) .
If it's mechanical power, then
Power = (work done) / (time to do the work) .
If it's electrical power, then it can be any one of these:
Power = (volts) x (amperes)
Power = (volts)² / (resistance, ohms)
Power = (amperes)² x (resistance, ohms) .
Whatever kind of energy you're dealing with, power always
turns out to be
(amount of energy produced, used, or moved)
divided by
(time taken to produce, use, or move the energy) .
Horizontal component = (10N) · sin (20°) = 3.42... N (rounded)
Vertical component = (10N) · cos (20°) = 9.39... N (rounded)