The period of the pendulum is 8.2 s
Explanation:
The period of a simple pendulum is given by the equation:

where
L is the length of the pendulum
g is the acceleration of gravity
T is the period
We notice that the period of a pendulum does not depend at all on its mass, but only on its length.
For the pendulum in this problem, we have
L = 16.8 m
and
(acceleration of gravity)
Therefore the period of this pendulum is

#LearnWithBrainly
There would be very less percentage loss<span> of the kinetic energy during </span>the conversion<span> to internal energy, assuming that there is less air in the </span>surroundings<span>. Also, the friction will contribute to the conversion where if it is, the percentage loses is negligible.</span>
False. this is just a physical change, not a chemical change.
In an electric circuit, the free electrons are moving around. Since equal charges repel and opposite charges attract, the electrons move from the negatively charged to the positively charged pole of the voltage source.
Answer:
Archaeologist use radioactive isotopes to determine the ages of various objects, rocks and materials. This is called radioactive dating. Radioactive isotope Carbon-14 is widely used for this dating process.
Scientists use radioactive isotopes in agriculture to monitor or study the uptake and use of essential nutrients by plants from the soil. This helps to determine viability, productivity and nutritious ability of the plants on a piece of land.
Geologists use radioactive isotopes to trace leaks in underground water storage, pipes. Radioactive isotopes are effective tracers because their radioactivity can be easily detected.